欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1266-1273.doi: 10.3724/SP.J.1006.2011.01266

• 耕作栽培·生理生化 • 上一篇    下一篇

大豆不同器官Na+含量与苗期耐盐性的相关分析

刘光宇,关荣霞**,常汝镇,邱丽娟*   

  1. 农作物基因资源与遗传改良国家重大科学工程 / 农业部作物种质资源利用重点开放实验室 / 中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2011-01-14 修回日期:2011-04-12 出版日期:2011-07-12 网络出版日期:2011-05-11
  • 通讯作者: 邱丽娟, E-mail: qiu_lijuan@263.net
  • 基金资助:

    本研究由国家自然科学基金项目(30671310,30971801),国家转基因生物新品种培育科技重大专项(2009ZX08009-088B)和国家重点基础研究发展计划(2009CB118400)资助。

Correlation between Na+ Contents in Different Organs of Soybean and Salt Tolerance at the Seedling Stage

LIU Guang-Yu,GUAN Rong-Xia**,CHANG Ru-Zhen,QIU Li-Juan*   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Germplasm Utilization, Ministry of Agriculture, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2011-01-14 Revised:2011-04-12 Published:2011-07-12 Published online:2011-05-11
  • Contact: 邱丽娟, E-mail: qiu_lijuan@263.net

摘要: 29个大豆品种用1/2 Hoagland营养液培养,待真叶完全展开后加入100 mmol L–1 NaCl胁迫处理。叶片盐害症状明显时(第8天),根据盐害症状划分大豆苗期耐盐级别,并分别取根、茎、叶和子叶,用原子吸收光谱仪测定其Na+含量。结果表明,大豆茎、叶和子叶Na+含量与耐盐级别呈极显著正相关。利用不同器官Na+含量聚类,发现I级和II级苗期耐盐品种聚为一类,而III~V级苗期盐敏感品种聚为一类。耐盐品种叶片和子叶的Na+平均含量极显著(P≤0.01)低于盐敏感品种,茎Na+平均含量差异达显著水平(P≤0.05),而根Na+平均含量差异不显著。因此,叶片和子叶Na+含量能有效区分苗期耐盐和盐敏感大豆品种。水培条件下,以叶片或子叶Na+含量作为生理指标鉴定大豆苗期耐盐性的方法,为大豆苗期耐盐种质鉴定、耐盐基因挖掘和品种培育创造了条件。

关键词: 大豆, 品种资源, 苗期, 耐盐性, Na+含量

Abstract: Salinity is recognized as one of the abiotic stresses negetively affecting crop productivity worldwide, which is mainly introduced by the consequence of Na+ toxicity. Great advances have been made in screening methodologies for salt tolerant soybean [Glycine max (L.) Merr.] in recent years. But few studies have focused on the evaluation of the relationship of soybean salt tolerance with Na+ content in different organs. The objective of our study was to develop a steady, measurable and effective method for salt tolerance evaluation of soybean germplasm based on measuring Na+ content in soybean. Twenty nine cultivars were grown in 1/2 Haogland nutrient solution, in which 100 mmol L–1 NaCl was added when the second pair of simple primary leaves fully expanded. The visual foliar symptom was used to evaluate the scale of the salt tolerance. Roots, stems, leaves, and cotyledons were sampled at eight days after salt treatment. Different parts of the plant were measured by the atomic absorption spectrophotometer. Na+ content was extremly correlated with the scale of salt tolerance content in stem, leaf and cotyledon but not in root. Clustering for salt tolerant (including scale of 1 and 2) and salt sensitive (including scale of 3, 4, and 5) soybean cultivars at seedling stage based on Na+ contents in stem, leaf and cotyledon. The average Na+ contents of leaf and cotyledon from the tolerant cultivars were significantly lower than those from the sensitive culitvars. There was significant difference of Na+ contents in roots but there was not in stem between tolerant and sensitive soybean. Therefore, Na+ content in leaf and cotyledon can be used for evaluation of salt tolerance in cultivated soybean at the seedling stage. The results indicated that the possibility evaluating salt tolerant soybean cultivars at the seedling stage by Na+ content of leaf and cotyledon in hydroponics provides a method for germplasm identification, gene cloning and cultivar development of salt tolerance in soybean.

Key words: Soybean, Germplasm, Seedling stage, Salt tolerance, Na+ content

[1]Munns R, Cramer G, Ball M. Interactions between rising CO2, soil salinity and plant growth. In: Luo Y, Mooney H, eds. Carbon Dioxide and Environmental Stress. London: Academic Press, 1999
[2]Yang J-S(杨劲松). Development and prospect of the research on salt-affected soils in China. Acta Pedol Sin (土壤学报), 2008, 45(5): 837–845 (in Chinese with English abstract)
[3]Yao Y-J(姚荣江), Yang J-S(杨劲松), Liu G-M(刘广明). Characteristics and agro-biological management of saline-alkalized land in northeast China. Soils (土壤), 2006, 38(3): 256–262 (in Chinese with English abstract)
[4]Jiang D-H(姜德华). The utilization and transformation of north China plain. Geographical Res (地理研究), 1983, 2(1): 1–11 (in Chinese with English abstract)
[5]Lin H-M(林汉明), Chang R-Z(常汝镇), Shao G-H(邵桂花), Liu Z-T(刘忠堂). Research on Tolerance to Stresses in Chinese Soybean (中国大豆耐逆研究). Beijing: China Agriculture Press, 2009 (in Chinese)
[6]Shao G-H(邵桂花), Song J-Z(宋景芝), Liu H-L(刘惠令). Preliminary studies on the evaluation of salt tolerance in soybean varieties. Sci Agric Sin (中国农业科学), 1986, (6): 30–35 (in Chinese with English abstract)
[7]Shao G-H(邵桂花). Relationship between the distribution of salt-tolerance soybean and salinity. Crops (作物杂志), 1988, (2): 34, 36 (in Chinese)
[8]Ma S-S(马淑时), Wang W(王伟). Research on the saline-alkalized tolerance of soybean germplasm. J Jilin Agric Sci (吉林农业科学), 1994, 4: 69–71 (in Chinese)
[9]Li X-H(李星华), Chen W-M(陈宛妹), Li Z-L(李增禄). Appraisal of salt tolerance of soybean germplasm in Shandong province. Shandong Agric Sci (山东农业科学), 1996, (4): 11–13
[10]Essa T. Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J Agron Crop Sci, 2002, 188: 86–93
[11]An P, Inanaga S, Cohen Y, Kafkafi U, Sugimoto Y. Salt tolerance in two soybean cultivars. J Plant Nutr, 2002, 25: 407–423
[12]Luo Q-Y(罗庆云), Yu B-J(於丙军), Liu Y-L(刘有良). Effect of NaCl on the growth, K+, Na+ and Cl– distribution in seedlings of six soybean cultivars (Glycine max L. Merrill). Soybean Sci (大豆科学), 2001, 20(3): 177–182 (in Chinese with English abstract)
[13]Durand M, Lacan D. Sodium partitioning within the shoot of soybean. Physiol Plant, 1994, 91: 65–71
[14]Li X, An P, Inanaga S, Eneji E, Tanabe K. Salinity and defoliation effects on soybean growth. J Plant Nutr, 2006, 29: 1499–1508
[15]Gao J P, Chao D Y, Lin H X. Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integr Plant Biol, 2007, 49: 742–745
[16]Li W Y F, Wong F L, Tsai S N, Phang T H, Shao G H, Lam H M. Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ, 2006, 29: 1122–1137
[17]Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot, 2003, 91: 503–527
[18]Umezawa T, Shimizu K, Kato M, Ueda T. Enhancement of salt tolerance in soybean with NaCl pretreatment. Physiol Plant, 2000, 110: 59–63
[19]Valencia R, Chen P Y, Ishibashi T, Matthew C. A rapid and effective method for screening salt tolerance in soybean. Crop Sci, 2008, 48: 1773–1779
[20]Lee G J, Boerma H, Villagarcia M, Zhou X, Carter T, Li J Z, Gibbs M. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet, 2004, 109: 1610–1619
[21]Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet, 2004, 108: 253–260
[22]Luo Q Y, Yu B J, Liu Y L. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and Glycine soja under NaCl stress. J Plant Physiol, 2005, 162: 1003–1012
[23]Shao G H. Screening for salt tolerance to soybean cultivars of the United States. Soybean Genet Newslett, 1995, 22: 32–42
[24]Aladdin H, Xu D H. Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans. Breed Sci, 2008, 58: 355–359
[25]Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141–1146
[1] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[6] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[7] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[8] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[9] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!