欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (07): 1259-1265.doi: 10.3724/SP.J.1006.2011.01259

• 耕作栽培·生理生化 • 上一篇    下一篇

不同水氮处理对玉米氮素诊断指标的影响

朱娟娟1,梁银丽1,2,Tremblay Nicolas3,*   

  1. 1 西北农林科技大学生命科学学院, 陕西杨陵 712100; 2 中国科学院水利部水土保持研究所, 陕西杨陵 712100; 3 加拿大农业与农业食品部园艺研究与发展中心, St-Jean-sur-Richelieu, J3B 3E6, Canada
  • 收稿日期:2010-12-20 修回日期:2011-03-27 出版日期:2011-07-12 网络出版日期:2011-05-11
  • 通讯作者: Nicolas.Tremblay@agr.gc.ca, Tel: +1-450-515-2102, Fax: +1-450-346-7740
  • 基金资助:

    This work was supported by SAGES funding from Agriculture and Agri-Food Canada and the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-443-3).

Responses of Corn (Zea mays L.) Nitrogen Status Indicators to Nitrogen Rates and Soil Moisture

ZHU Juan-Juan1,LIANG Yin-Li1,2,Tremblay Nicolas3,*   

  1. 1 College of Life Science, Northwest A&F University, Yangling 712100, China; 2 Institute of Soil Water and Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 3 Horticulture Research and Development Centre, Agriculture and Agri-Food Canada, 430 Bloul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
  • Received:2010-12-20 Revised:2011-03-27 Published:2011-07-12 Published online:2011-05-11
  • Contact: Nicolas.Tremblay@agr.gc.ca, Tel: +1-450-515-2102, Fax: +1-450-346-7740
  • Supported by:

    This work was supported by SAGES funding from Agriculture and Agri-Food Canada and the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-443-3).

摘要: SPAD-502叶绿素仪与Dualex-3多酚仪均可诊断作物的氮素营养状况, 为了探讨不同水分条件下该指标对作物施氮量的响应, 以玉米品种Pioneer 38B84为研究对象, 在温室盆栽条件下, 研究3个土壤水分水平(干旱、干旱后复水和水分良好)和4个施氮水平(0、50、50+75和200 kg hm-2), 即12个处理对植物含氮量、SPAD值、Dualex值以及SPAD/Dualex比值的影响。结果表明, 植物含氮量、SPAD值和SPAD/Dualex比值均随施氮量的增加而增加, Dualex值随施氮量的增加而减少。干旱胁迫初期, 植物含氮量、SPAD值和SPAD/Dualex比值迅速下降, Dualex值迅速增加;随着干旱胁迫时间的推进, 各指标逐渐呈相反趋势变化。干旱复水后, 植物含氮量、Dualex值和SPAD/Dualex比值逐渐恢复, 然而SPAD值恢复较小。SPAD值(r=0.92)、Dualex值(r= -0.86)及SPAD/Dualex(r=0.63)值与植物含氮量呈极显著的相关性, 但试验后期, 由于生长阶段的不同, SPAD值和Dualex值与植物含氮量在干旱条件下(SPAD:r=0.90;Dualex:r= -0.83)的相关性高于在水分良好条件下(SPAD:r=0.39; Dualex:r= -0.44)。通过比较不同水分条件下, SPAD值、Dualex值和SPAD/Dualex值对不同施氮量的响应, 发现Dualex值在不同水分条件下均能较好地反应施氮水平。

关键词: 氮素, 诊断指标, 干旱, 复水

Abstract: Plants usually experience fluctuating water supply during their life cycle due to continuous changes in climatic factors. Soil water content (SWC) is one of the most critical factors affecting nitrogen (N) availability, movement, and uptake by crops. Consequently, SWC levels may confound the assessment of crop N status. The present study compared the sensitivity of tissue N concentration, SPAD readings, Dualex readings, and SPAD/Dualex ratios for assessing corn (Zea mays L.) N status under different water supply conditions. A greenhouse trial was conducted with four N fertilizer application rates (0, 50, 50+75, and 200 kg ha-1) and three watering levels (drought, drought followed by rewatering, and fully-watered). Tissue N concentration, SPAD, Dualex, and SPAD/Dualex values were influenced significantly by N rates and by SWC. Tissue N concentration, SPAD, and SPAD/Dualex increased with N rates, whereas Dualex decreased. In the first phase of reaction to drought, tissue N concentration, SPAD and SPAD/Dualex decreased rapidly but Dualex increased; however, the opposite pattern of response was observed in the long term. Under rewatering, tissue N concentration, Dualex and SPAD/Dualex gradually recovered, whereas SPAD values did not change significantly as they did in the drought treatment. There were highly significant relationships between SPAD (r=0.92), Dualex (r= -0.86), or SPAD/Dualex (r=0.63) and tissue N concentration. However, SPAD and Dualex were better predictors of tissue N concentration under drought conditions (SPAD:r=0.90;Dualex:r= -0.83) than under fully-watered conditions (SPAD:r=0.39; Dualex:r= -0.44) at the end of the trial. Among the indicators, Dualex was better able to discriminate N treatments, with consistent results across SWC levels.

Key words: Indicators, N status, drought, water recovery

[1]Argenta G, Ferreira da Silva P R, Sangoi L. Leaf relative chlorophyll content as an indicator parameter to predict nitrogen fertilization in maize. Ciência Rural, Santa Maria, 2004, 34: 1379–1387
[2]Piekielek W P, Fox R H, Toth J D, Macneal K E. Use of a chlorophyll meter at the early dent stages of corn to evaluate nitrogen sufficiency. Agron J, 1995, 87: 403–408
[3]Vidal I, Longeri L, Hètier J M. Nitrogen uptake and chlorophyll meter measurements in spring wheat. Nutr Cycl Agroecosyst, 1999, 55: 1–6
[4]Tremblay N, Fortier É, Mellgren R, Belec C, Jenni S. The Dualex—a new tool to determine nitrogen sufficiency in broccoli. Acta Hortic, 2009, 824: 121–131
[5]Schröder J J, Neeteson J J, Oenema O, Struik P C. Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crops Res, 2000, 66: 151–164
[6]Blackmer T M, Schepers J S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J Prod Agric, 1995, 8: 56–60
[7]Samborski S M, Tremblay N, Fallon E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron J, 2009, 101: 800–816
[8]Goulas Y, Cerovic Z G, Cartelat A, Moya I. Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl Opt, 2004, 43: 4488–4496
[9]Cartelat A, Cerovic Z G, Goulas Y, Meyer S, Lelarge C, Prioul J L, Barbottinc A, Jeuffroy M H, Gate P, Agati G, Moya I. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Res, 2005, 91: 35–49
[10]Tremblay N, Wang Z, Bèlec C. Evaluation of the Dualex for the assessment of corn nitrogen status. J Plant Nutr, 2007, 30: 1355–1369
[11]Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiol. Biochem, 2007, 45: 244–249
[12]Jones C G, Hartley S E. A protein competition model of phenolic allocation. OIKOS, 1999, 86: 27–44
[13]Meyer S, Cerovic Z G, Goulas Y, Montpied P, Demotes-Mainard S, Bidel L P R, Moya I, Dreyer E. Relationships between optically assessed polyphenols and chlorophyll contents and leaf mass per area ratio in woody plants: a signature of the carbon-nitrogen balance within leaves? Plant Cell Environ, 2006, 29: 1338–1348
[14]Cheruiyot E K, Mumera L M, Ngètich W K, Hassanali A, Wachira F. Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.). Biosci Biotechnol Biochem, 2007, 71: 2190–2197
[15]Liao C F H, Bartholomew WV. Relation between nitrate absorption and water transpiration by maize. Soil Sci Soc Am Proc, 1974, 38: 472–479
[16]Buljovcic Z, Engels C. Nitrate uptake ability by maize roots during and after drought stress. Plant Soil, 2001, 229: 125–135
[17]Martìnez D E, Guiamet J J. Distortion of the SPAD-502 chlorophyll meter readings by changes in irradiance and leaf water status. Agron J, 2004, 24:41–46
[18]Scalabrelli G, Saracini E, Remorini D, Massai R. Changes in leaf phenolic compounds in two grapevine varieties (Vitis vinifera L.) grown in different water conditions. Acta Hortic, 2007, 754: 295–299
[19]Estiarte M, Penuelas J, Kimball B A, Hendrix D L, Pinter P J, Wall G W, LaMorte R L, Hunsaker D J. Free-air CO2 enrichment of wheat: leaf flavonoid concentration throughout the growth cycle. Physiol Plant, 1999, 105: 423–433
[20]Isaac R A, Johnson W C. Determination of total nitrogen in plant tissue using a block digester. J Assoc Off Anal Chem, 1976, 59: 98–100
[21]Lachat Instruments. 2005. Methods list for automated ion analyzers (flow injection analyses, ion chromatography)
[2005-4-8] http://www. lachatinstruments.com/ applications/MethodsList.PDF.
[22]SAS Institute. SAS for windows. V.9.1. SAS Inst., Cary, NC, 2003
[23]Little T M, Hills F J. Agricultural Experimentation: Design and Analysis. Paperback. Wiley, 1978
[24]Hedeker D, Gibbons R D. Longitudinal data analysis. New Jersey: John Wiley & Sons, Inc. Hoboken, 2006
[25]Klaus H, Oscar K. Design and Analysis of Experiments. New Jersey: John Wiley & Sons, Inc., Hoboken, 2008
[26]Elwadie M E, Pierce F J, Qi J. Remote sensing of canopy dynamics and biophysical variables estimation of corn in Michigan. Agron J, 2005, 97: 99–105
[27]Schlemmer M R, Francis D D, Shanahan J F, Schepers J S. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron J, 2005, 97: 106–112
[28]Sanchez R A, Hall A J, Trapani N, de Hunau R C. Effects of water stress on the chlorophyll content, nitrogen level and photosynthesis of leaves of two maize genotypes. Photosynth Res, 1983, 4: 35–47
[29]Muh J, Franke J, Borken W. Drying–rewetting events reduce C and N losses from a Norway spruce forest floor. Soil Biol Biochem, 2010, 42: 1303–1312
[30]Horner J D. Nonlinear effects of water deficits on foliar tannin concentration. Biochem Syst Ecol, 1990, 18: 211–213
[31]Nicolas M, Simpson R J, Lambers H, Dalling M J. Effects of drought on partitioning of nitrogen in two wheat varieties differing in drought-tolerance. Ann. Bot, 1985, 55: 743–754
[32]Liu R X, Zhou Z G, Guo W Q, Chen B L, Oosterhuis D M. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants. Agric Water Manag, 2008, 95: 1261–1270
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[5] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[6] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[10] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[11] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 阮俊梅, 张俊, 刘猷红, 董文军, 孟英, 邓艾兴, 杨万深, 宋振伟, 张卫建. 田间开放式增温对东北水稻氮素利用的影响[J]. 作物学报, 2022, 48(1): 193-202.
[14] 付正豪, 马中涛, 魏海燕, 邢志鹏, 刘国栋, 胡群, 张洪程. 不同机械化栽培方式下控释肥配比对迟熟中粳水稻产量形成及氮素吸收利用的影响[J]. 作物学报, 2022, 48(1): 165-179.
[15] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!