欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1860-1867.doi: 10.3724/SP.J.1006.2011.01860

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻叶色突变体高光合特性研究

欧立军   

  1. 怀化学院生命科学系 / 民族药用植物资源研究与利用湖南省重点实验室 / 湘西药用植物与民族植物学湖南省高校重点实验室,湖南怀化418008
  • 收稿日期:2011-01-31 修回日期:2011-05-25 出版日期:2011-10-12 网络出版日期:2011-07-28
  • 基金资助:

    本研究由怀化学院民族药用植物资源研究与利用湖南省重点实验室项目(SYSXM200905)资助。

High Photosynthetic Efficiency of Leaf Colour Mutant of Rice (Oryza sativa L.)

 OU  Li-Jun   

  1. Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources / Key Laboratory of Hunan Higher Education for Hunan-Western Medicinal Plant and Ethnobotany, Department of Life Sciences, Huaihua University, Huaihua 418008, China
  • Received:2011-01-31 Revised:2011-05-25 Published:2011-10-12 Published online:2011-07-28

摘要: 标810S是温敏核不育系810S中的淡黄绿叶自然突变株,具有较高的光合速率。本文对突变体的光合色素、光合速率、荧光参数和光合关键酶活性等研究发现,标810S光合色素约为810S的一半,强光条件下标810S光合速率(Pn)比对照高,且没有明显的“午休”现象。标810S气孔导度(Gs)显著增加,叶绿素荧光动力学参数显示,标810S光量子转化效率高;光合酶1,5-二磷酸核酮糖羧化酶(RuBPCase)活性是对照的69.80%,磷酸烯醇式丙酮酸羧化酶(PEPCase)和NADP-苹果酸酶(NADH-ME)却比810S分别上升79.50%和69.06%。研究结果认为,光合色素含量下降是标810S叶片呈淡黄绿叶色的根本原因。突变体通过减少热耗散和提高光合电子传递速率来提高光能利用效率,为暗反应提供足够的同化力,而较高的PEPC活性和较大的气孔导度使其能更有效地固定CO2,光反应和暗反应的协同使突变体具有较高的光合速率。

关键词: 水稻叶色突变体, 光合特性, 气孔导度, 叶绿素荧光, 光合酶

Abstract: Biao 810S is a yellow-green leaf mutant of the thermosensitive genic male sterile (TGMS) rice which has higher photosynthetic rate. The photosynthetic characteristics of Biao 810S were studied with the wild type TGMS line 810S as a control to clarify the physiological basis of high photosynthetic efficiency and provide a theoretical basis for further utilization. The photosynthetic pigment, photosynthetic rate, fluorescence parameters and activity of photosynthetic key enzyme were measured. The content of photosynthetic pigment in Biao 810S was approximately half of that in 810S. However, the net photosynthetic rate of Biao 810S was higher than that of 810S under high intensity light and Biao 810S had no obvious ‘Midday depression’ phenomenon. The stomatal conductance of Biao 810S was highly increased and the light quantum transformation efficiency was higher than that of 810S. The activity of ribulose -1,5-bisphosphate carboxylase (RuBPCase) in Biao 810S was 69.80% of that in 810S, but the activities of phosphoenolpyruvate carboxylase (PEPCase) and NADP-malic enzyme (NADP-ME) were 79.50% and 69.06% higher than those of 810S. The efficiency of light utilization in Biao 810S was enhanced by reduction of thermal dissipation and increase of electron transfer rate was generate sufficient assimilation power for the dark reactions. Consequently, the increased activities of PEPCase and stomatal conductance led to more effective fixation of CO2, and the synergistic effect of light reactions and dark reactions contributed to the higher photosynthetic rate of Biao 810S.

Key words: Leaf colour mutant of rice, Photosynthetic characteristics, Stomatal conductance, Chlorophyll fluorescence, Photosynthetic enzyme

[1]Yu B-S(于佰双), Wang P-Y(王培英). Identification and use of chlorophyll mutant of soybean. J Nucl Agric Sci (核农学通报), 1990, 11(3): 121?122 (in Chinese)
[2]Wang T(王台), Tong Z(童哲). Specific proteins in chloroplasts of photopriod-sensitive genic male-sterile rice. Acta Bot Sin (植物学报), 1992, 31(6): 426?431 (in Chinese with English abstract)
[3]Green B A, Allred D R, Morishige T D. Hierarchical response of light harvesting chlorophyll-proteins in a light-sensitive chlorophyll b-deficient mutants of maize. Plant Physiol, 1988, 77: 357?362
[4]Melis A, Thielen A P G M. The relative absorption cross-sections of photosystem I and photosystem II in chloroplasts from three types of Nicotiana tabacum. Biochim Biophys Acta, 1980, 589: 275?286
[5]Ghirardi M L, Melis A. Chlorophyll b-deficiency in soybean mutants: I. Effects on photosystem stoichiometry and chlorophyll antenna size. Biochim Biophys Acta, 1988, 932: 130?137
[6]Tian H-Y(田红英), Shao J-R(邵继荣), Sun J-S(孙敬三). The change of Rubisco activity and protein subunits in the process of leaf chlorosis in rice. J Northern Sichuan Edu Coll (川北教育学院学报), 2002, 12(1): 61?63 (in Chinese)
[7]Sun Q(孙群), Wang P-H(汪沛洪). Changes of free amino acid pool and its components in the albinism process of mutant “stage albinism line of winter wheat”. Plant Physiol Commun (植物生理学通讯), 1992, 28(1): 18?21(in Chinese)
[8]Wu D-X(吴殿星), Shu Q-Y(舒庆尧), Xia Y-W(夏英武), Xia J-F(夏建峰), Zheng X-Q(郑星勤), Liu G-F(刘贵付). Carbohydrate and protein metabolism in seedling leaves of a greenable albino mutant line cv. W_(25) of rice (Oryza sativa). Acta Photophysiol Sin (植物生理学报), 1997, 23(3): 209?212 (in Chinese with English abstract)
[9]Weng X-Y(翁晓燕), Jiang D-A(蒋德安), Lu Q(陆庆). Changes in Rubisco activity, Rubisco activase activity and photosynthetic rate in greenable albino mutation line of rice during greening. Acta Photophysiol Sin (植物生理学报), 2000, 26(3): 209?212 (in Chinese with English abstract)
[10]Tan X-X(谭新星), Xu D-Q(许大全), Tang Z-S(汤泽生). Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll-deficient mutant of barley. Acta Phytophysiol Sin (植物生理学报), 1996, 22(1): 51?57 (in Chinese with English abstract)
[11]Dai X B, Xu X M, Lu W, Kuang T Y. Photoinhibition characteristics of a low chlorophyll b mutant of high yield rice. Photosynthetica, 2003, 41: 57?60
[12]Zhou X S, Shen S Q, Wu D X, Sun J W, Shu Q Y. Introduction of a xantha mutation for testing and increasing varietal purity in hybrid rice. Field Crops Res, 2006, 96: 71?79
[13]Lü D-H(吕典华), Zong X-F (宗学凤), Wang S-G(王三根), Ling Y-H(凌英华), Sang X-C(桑贤春), He G-H(何光华). Characteristics of photosynthesis in two leaf color mutants of rice. Acta Agron Sin (作物学报), 2009, 35(12): 2304?2308 (in Chinese with English abstract)
[14]Arnon D I. Copper enzymes inisolated chloroplasts phenoloxidases in Beta vulgaris. Plant Physiol, 1949, 24: 1?15
[15]Qiu Y-L(邱义兰), Liu R-S(刘如石), Xie C-T(谢潮添), Yang Y-H(杨延红), Gu L(谷力), Tian H-Q(田惠桥). The dynamics of calcium distribution in stigma and style of lettuce (Lactuca sativa L.) before and after pollination. Acta Biol Exp Sin (实验生物学报), 2005, 38(4): 277?286 (in Chinese with English abstract)
[16]Li M, Yang D, Li W. Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding. Photosynthetica, 2007, 45: 222?228
[17]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 900: 87?92
[18]Ting I P, Osmond C B. Photosynthetic phosphoenolpyruvate carboxylase charactertics of alloenzymes from leaves of C3 and C4 plant. Plant Physiol, 1973, 51: 439?447
[19]Sayre R T, Kennedy R A, Pringnitz D J. Photosynthetic enzyme activities and localization in mollugo verticillata population differing on the leaves of C3 and C4 cycle operations. Plant Physiol, 1979, 64: 293?229
[20]Lilley R M, Walker D A. An improved spectrophotometric assay for ribulose diphospate carboxylase. Biochim Biophys Acta, 1974, 358: 226?229
[21]Johnson H S, Hatch M D. Properties and regulation of leaf NADP-malate dehydrogenase and malic enzyme in plants with C4-dicarboxlic pathway of photosynthesis. Biochem J, 1970, 119: 273?280
[22]Chen G-Y(陈根云), Ye J-Y(叶济宇). Effects of oxaloacetate and malate on photosynthesis in leaves and in intact chloroplasts from Spinach. Acta Photophysiol Sin (植物生理学报), 2001, 27(6): 478?482 (in Chinese with English abstract)
[23]Baker N R, Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot, 2004, 403: 1607?1621
[24]Oxborough K, Baker N R. Resolving chlorophyll a flurescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv'/Fm' without measuring Fo'. Photosynth Res, 1997, 54: 135?142
[25]Roh?cek K, Bart?k M. Technique of the modulated chlorophylflurescence: basis concepts, useful parameters and some applications. Photosynthetica, 1999, 37: 339?363
[26]Deming A B, Adams W W. The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Sci, 1996, 1: 21?26
[27]Roh?cek K, Bart?k M. Technique of the modulated chlorophylflurescence:basis concepts, useful parameters and some applications. Photosynthetica, 1999, 37: 339?363
[28]Jenkins C L D. Effects of the phosphoenolpyruvate carboxylase inhibitor 3,3-dichloro-2-(dihydroxyphosphinoylmethyl) propenoate on photosynthesis: C4 selectivity and studies on C4 photosynthesis. Plant Physiol, 1989, 89: 1231?1237
[29]Lin Y-Q(林钰琼), Liu S(刘松), Fu Y-P(傅亚萍), Yu Y-H(于永红), Hu G-C(胡国成), Si H-M(斯华敏), Sun Z-X(孙宗修). Chlorophyll contents and net photosynthetic rates of T-DNA inserted rice mutant population. Chin J Rice Sci (中国水稻科学), 2003, 17(4): 369?372 (in Chinese with English abstract)
[30]Zhou X S, Wu D X, Shen S H, Sun J W, Shu Q Y. High photosynthetic efficiency of a rice (Oryza sativa L.) xantha mutant. Photosynthetica, 2006, 44: 316?319
[31]Fischer R A, Rees O, Sayre K D. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate and cooler canopies. Crop Sci, 1998, 38: 1467?1475
[32]Edwards G. In C3, C4: Mechamisms, and Cellular and Entiron- mental Regulationof Photosynthesis. Oxford U K: Blackwell Scientific Publications, 1983. pp 480?486
[33]Ku M S B, Ranade D C U. Photosynthetic Performance of Transgenic Rice Plants Overexpressing Maize C4 Photosynthesis Enzymes Redesigning Rice Photosynthesis to Increase Yield. Philippines: IRRI Elsevier Science Press, 2000. pp 193?203
[34]Collatz G J. Influence of certain environmental factors on photosynthesis and photorespiration in Simmondsia chinensis. Planta, 1997, 134: 127?132
[35]Farguhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982, 33: 317?345
[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[4] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[5] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[6] 竞霞, 邹琴, 白宗璠, 黄文江. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079.
[7] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[8] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[9] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[10] 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289.
[11] 杜进勇,柴强,王一帆,范虹,胡发龙,殷文,李登业. 地上地下互作强度对小麦间作玉米光合特性的影响[J]. 作物学报, 2019, 45(9): 1398-1406.
[12] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[13] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[14] 任永福,陈国鹏,蒲甜,陈诚,曾瑾汐,彭霄,马艳玮,杨文钰,王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应[J]. 作物学报, 2019, 45(5): 728-739.
[15] 吴含玉,张雅君,张旺锋,王克如,李少昆,姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制[J]. 作物学报, 2019, 45(2): 248-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!