作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1904-1909.doi: 10.3724/SP.J.1006.2011.01904
房孝良1,2,3,刘炜1,2,3,*,安静1,王庆国1,2
FANG Xiao-Liang1,2,3,LIU Wei1,2,3,*,AN Jing1,WANG Qing-Guo1,2
摘要: 以水稻品种“中花11”基因组DNA为模板,通过PCR的方法,对水稻基因OsESG上游调控序列扩增,获得长度约为1.4 kb 的特异性条带,命名为OsESP1。以OsESP1与带有GUS报告基因的植物表达载体连接,经农杆菌介导转化获得转基因水稻阳性植株。结合组织化学染色法,检测GUS报告基因的表达特性,结果表明,由OsESP1所调控的GUS报告基因仅在水稻种胚中特异表达,而在其他组织中均未被检测到,初步证明OsESP1为水稻种胚特异性启动子。
[1]Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiol, 1995, 108: 451?457 [2]Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90: 929?938 [3]Stein J C, Howlett B, Boyes D C. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of B rassicaoleracea. Prot Natl Acad Sci USA, 1991, 88: 8816?8820 [4]Song W Y, Wang G L, Chen L L. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804?1806 [5]Stone S L, Kwong L W, Yee K M, Pelletier J, Lepiniec L, Fischer R L, Coldberg R B, Harada J J. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Prot Natl Acad Sci USA, 2001, 98: 11806?11811 [6]Cai M, Wei J, Li X, Xu C, Wang S. A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific biotechnology gene expression in transgenic plants. Plant J, 2007, 5: 664?674 [7]Zhang X-Y(张宪银), Xue Q-Z(薛庆中). Cloning of a rice endosperm-specific promoter Gt l and its functional verifiction. Acta Agron Sin (作物学报), 2002, 28(1): 110?114 (in Chinese with English abstract) [8]Qu L Q, Takaiwa F. Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotech J, 2004, 2: 113?125 [9]Danny W, Timothy C. PvALF and FUS3 activate expression from the phaseolin promoter by different mechanisms. Plant Mol Biol, 2008, 66: 233?244 [10]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321?4325 [11]Hofgen R, Willmitzer L. Storage of competent cell for agrobacterium transformation. Nucl Acids Res, 1988, 16: 9877 [12]Liu Q-Q(刘巧泉), Gu M-H(顾铭洪). A highly efficient transformation system mediated by agrobacterium tumefaciens in rice (Oryza sativa L.). J Plant Physiol Mol Biol (植物生理学报), 1998, 24: 259?271 (in Chinese with English abstract) [13]Jefferson R A. Assaying chimeric genes in plants: the GLJS gene fusion system. Plant Mol Biol Rep, 1987, 5: 387?405 [14]Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucl Acids Res, 27: 297?300 [15]Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol, 1993, 101: 1119?1120 [16]Reyes J C, Muro-Pastor M I, Florencio F J. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol, 2004, 134: 1718?1732 [17]Nishiuchi T, Shinshi H, Suzuki K. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem, 2004, 279: 55355?55361 [18]Ellerstrom M, Stalberg K, Ezcurra I, Rask L. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol, 1996, 32: 1019?1027 [19]Kim S Y, Chung H J. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo- specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J, 1997, 11: 1237?1251 [20]Thomas M S, Flavell R B. Identification of an enhancer element for the endosperm-specific expression of high molecular weight glutenin. Plant Cell, 1990, 2: 1171?1180 [21]Rubio-Somoza I, Martinez M, Abraham Z, Diaz I, Carbonero P. Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds. Plant J, 2006, 47: 269?281 [22]Bate N, Twell D. Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol, 1998, 37: 859?869 [23]Shirsat A, Wilford N, Croy R, Boulter D. Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet, 1989, 215: 326?331 [24]Yoshida K, Shinmyo A. Transgene expression systems in plant, a natural bioreactor. J Biosci Bioeng, 2000, 90: 353?362 [25]Rossak M, Smith M, Kunst L. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Mol Biol, 2001, 46: 717?725 [26]Kuwano M, Mimura T, Talcaiwa F. Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINOl) using the 18-kDa oleosin promoter. Plant Biotech J, 2009, 7: 96?105 [27]Wu C Y, Adachi T, Hatano T, Washida H, Suzuki A, Takaiwa F. Promoters of rice seed storage protein genes direct endosperm-specific gene expression in transgenic rice. Plant Cell Physiol, 1998, 39: 885?889 [28]Hwang Y S, Yang D, Mccuar C. Analysis of the rice specific globulin promoter in transfomed rice cells. Plant Cell, 2002, 20: 842?847 [29]Jose-Estanyol M, Perez P. Expression of the promoter of HyPRP, an embryo-specific gene from Zea mays in maize and tobacco transgenic plants. Gene, 2005, 356: 146?152 [30]Hwang Y S, Nichol S, Nandi S, Jernstedt J. Aleurone- and embryo-specific expression of the β-glucuronidase gene controlled by the barley Chi26 and Ltp1 promoters in transgenic rice. Plant Cell Rep, 2001, 20: 647?654 [31]Doshi K M, Eudes F, Laroche A, Gaudet D. Transient embryo-specific expression of anthocyanin in wheat. Biomed Life Sci, 2006, 42: 432?438 [32]Kim J H, Jung I J, Kim D Y, Fanata W I, Son B H, Yoo J Y, Harmoko R, Ko K S, Moon J C, Jang H H, Kim W Y, Kim J Y, Lim C O, Lee S Y, Lee K O. Proteomic identification of an embryo-specific 1Cys-Prx promoter and analysis of its activity in transgenic rice. Biochem Biophys Res Commun, 2011, 408: 78?83 [33]Gu Y-H(古英红), Tang H-R(汤浩茹), Zhang Y-Z(张义正). Molecular cloning, sequence analysis of polygalacturonase inhibiting protein gene from Prunus persica and its expression in E. coli. Sci Agric Sin (中国农业科学), 2008, 41(10): 3191?3199 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|