欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1904-1909.doi: 10.3724/SP.J.1006.2011.01904

• 研究简报 • 上一篇    下一篇

水稻种胚特异性启动子OsESP1的克隆及其表达特性分析

房孝良1,2,3,刘炜1,2,3,*,安静1,王庆国1,2   

  1. 1山东省农业科学院高新技术研究中心 / 山东省作物遗传改良与生物技术重点实验室, 山东济南 250100; 2农业部黄淮海作物遗传改良与生物技术重点开放实验室, 山东济南 250100; 3山东师范大学生命科学学院, 山东济南250014
  • 收稿日期:2011-03-07 修回日期:2011-06-25 出版日期:2011-10-12 网络出版日期:2011-07-28
  • 通讯作者: 刘炜, E-mail: wheiliu@163.com, Tel: 0531-83179572

Isolation and Characterization of an Embryo-specific Promoter OsESP1 from Rice

FANG Xiao-Liang1,2,3,LIU Wei1,2,3,*,AN Jing1,WANG Qing-Guo1,2   

  1. 1 High-Tech Research Center, Shandong Academy of Agricultural Sciences / Key Laboratory for Genetic Improvement of Crop Animal and Poultry of Shandong Province, Jinan 250100, China; 2 Key Laboratory of Crop Genetic Improvement and Biotechnology, Huanghuaihai, Ministry of Agriculture, Jinan 250100, China; 3 College of Life Sciences, Shandong Normal University, Jinan 250014, China
  • Received:2011-03-07 Revised:2011-06-25 Published:2011-10-12 Published online:2011-07-28
  • Contact: 刘炜, E-mail: wheiliu@163.com, Tel: 0531-83179572

摘要: 以水稻品种“中花11”基因组DNA为模板,通过PCR的方法,对水稻基因OsESG上游调控序列扩增,获得长度约为1.4 kb 的特异性条带,命名为OsESP1。以OsESP1与带有GUS报告基因的植物表达载体连接,经农杆菌介导转化获得转基因水稻阳性植株。结合组织化学染色法,检测GUS报告基因的表达特性,结果表明,由OsESP1所调控的GUS报告基因仅在水稻种胚中特异表达,而在其他组织中均未被检测到,初步证明OsESP1为水稻种胚特异性启动子。

关键词: 水稻, 种胚特异性启动子, 表达特性分析, GUS报告基因

Abstract: A pair of specific primers were designed according to the 5′ upstream regulatory sequence of rice gene OsESG, anda 1.4 kb fragement named OsESP1was amplified using rice (Oryza sativa L. cv. Zhonghua 11) genomic DNA as template by PCR. OsESP1 was further fused with GUS reporter gene and transformed into rice callus through Agrobacterium-mediated transformation. GUS activities in various tissues of transformed plants were examined and the GUS activity was detected only in rice embryo, indicating theOsESP1 is an embryo-specific promoter.

Key words: Rice, Embryo-specific promoter, Expression patern analysis, GUS reporter gene

[1]Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiol, 1995, 108: 451?457
[2]Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 1997, 90: 929?938
[3]Stein J C, Howlett B, Boyes D C. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of B rassicaoleracea. Prot Natl Acad Sci USA, 1991, 88: 8816?8820
[4]Song W Y, Wang G L, Chen L L. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804?1806
[5]Stone S L, Kwong L W, Yee K M, Pelletier J, Lepiniec L, Fischer R L, Coldberg R B, Harada J J. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Prot Natl Acad Sci USA, 2001, 98: 11806?11811
[6]Cai M, Wei J, Li X, Xu C, Wang S. A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific biotechnology gene expression in transgenic plants. Plant J, 2007, 5: 664?674
[7]Zhang X-Y(张宪银), Xue Q-Z(薛庆中). Cloning of a rice endosperm-specific promoter Gt l and its functional verifiction. Acta Agron Sin (作物学报), 2002, 28(1): 110?114 (in Chinese with English abstract)
[8]Qu L Q, Takaiwa F. Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotech J, 2004, 2: 113?125
[9]Danny W, Timothy C. PvALF and FUS3 activate expression from the phaseolin promoter by different mechanisms. Plant Mol Biol, 2008, 66: 233?244
[10]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321?4325
[11]Hofgen R, Willmitzer L. Storage of competent cell for agrobacterium transformation. Nucl Acids Res, 1988, 16: 9877
[12]Liu Q-Q(刘巧泉), Gu M-H(顾铭洪). A highly efficient transformation system mediated by agrobacterium tumefaciens in rice (Oryza sativa L.). J Plant Physiol Mol Biol (植物生理学报), 1998, 24: 259?271 (in Chinese with English abstract)
[13]Jefferson R A. Assaying chimeric genes in plants: the GLJS gene fusion system. Plant Mol Biol Rep, 1987, 5: 387?405
[14]Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucl Acids Res, 27: 297?300
[15]Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol, 1993, 101: 1119?1120
[16]Reyes J C, Muro-Pastor M I, Florencio F J. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol, 2004, 134: 1718?1732
[17]Nishiuchi T, Shinshi H, Suzuki K. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem, 2004, 279: 55355?55361
[18]Ellerstrom M, Stalberg K, Ezcurra I, Rask L. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol, 1996, 32: 1019?1027
[19]Kim S Y, Chung H J. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo- specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J, 1997, 11: 1237?1251
[20]Thomas M S, Flavell R B. Identification of an enhancer element for the endosperm-specific expression of high molecular weight glutenin. Plant Cell, 1990, 2: 1171?1180
[21]Rubio-Somoza I, Martinez M, Abraham Z, Diaz I, Carbonero P. Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds. Plant J, 2006, 47: 269?281
[22]Bate N, Twell D. Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol, 1998, 37: 859?869
[23]Shirsat A, Wilford N, Croy R, Boulter D. Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet, 1989, 215: 326?331
[24]Yoshida K, Shinmyo A. Transgene expression systems in plant, a natural bioreactor. J Biosci Bioeng, 2000, 90: 353?362
[25]Rossak M, Smith M, Kunst L. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Mol Biol, 2001, 46: 717?725
[26]Kuwano M, Mimura T, Talcaiwa F. Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINOl) using the 18-kDa oleosin promoter. Plant Biotech J, 2009, 7: 96?105
[27]Wu C Y, Adachi T, Hatano T, Washida H, Suzuki A, Takaiwa F. Promoters of rice seed storage protein genes direct endosperm-specific gene expression in transgenic rice. Plant Cell Physiol, 1998, 39: 885?889
[28]Hwang Y S, Yang D, Mccuar C. Analysis of the rice specific globulin promoter in transfomed rice cells. Plant Cell, 2002, 20: 842?847
[29]Jose-Estanyol M, Perez P. Expression of the promoter of HyPRP, an embryo-specific gene from Zea mays in maize and tobacco transgenic plants. Gene, 2005, 356: 146?152
[30]Hwang Y S, Nichol S, Nandi S, Jernstedt J. Aleurone- and embryo-specific expression of the β-glucuronidase gene controlled by the barley Chi26 and Ltp1 promoters in transgenic rice. Plant Cell Rep, 2001, 20: 647?654
[31]Doshi K M, Eudes F, Laroche A, Gaudet D. Transient embryo-specific expression of anthocyanin in wheat. Biomed Life Sci, 2006, 42: 432?438
[32]Kim J H, Jung I J, Kim D Y, Fanata W I, Son B H, Yoo J Y, Harmoko R, Ko K S, Moon J C, Jang H H, Kim W Y, Kim J Y, Lim C O, Lee S Y, Lee K O. Proteomic identification of an embryo-specific 1Cys-Prx promoter and analysis of its activity in transgenic rice. Biochem Biophys Res Commun, 2011, 408: 78?83
[33]Gu Y-H(古英红), Tang H-R(汤浩茹), Zhang Y-Z(张义正). Molecular cloning, sequence analysis of polygalacturonase inhibiting protein gene from Prunus persica and its expression in E. coli. Sci Agric Sin (中国农业科学), 2008, 41(10): 3191?3199 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!