欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (01): 99-106.doi: 10.3724/SP.J.1006.2012.00099

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻籽粒氮代谢几个关键酶对花后高温胁迫的响应及其与贮藏蛋白积累关系

曹珍珍,张其芳,韦克苏,杨卫丽,刘光快,程方民*   

  1. 浙江大学农业与生物技术学院,浙江杭州 310029
  • 收稿日期:2011-05-20 修回日期:2011-10-12 出版日期:2012-01-12 网络出版日期:2011-11-07
  • 通讯作者: 程方民, E-mail: chengfm@zju.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871488)和浙江省自然科学基金项目(Y307086)资助。

Response of Some Key Enzyme Activities Involved in Nitrogen Metabolism to High Temperature at Filling Stage and Its Relation to Storage Protein Accumulation in Rice Grain

CAO Zhen-Zhen,ZHANG Qi-Fang,WEI Ke-Su,YANG Wei-Li,LIU Gaung-Kuai,CHENG Fang-Min*   

  1. College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
  • Received:2011-05-20 Revised:2011-10-12 Published:2012-01-12 Published online:2011-11-07
  • Contact: 程方民, E-mail: chengfm@zju.edu.cn

摘要: 以早籼水稻嘉935和嘉353为材料,利用人工气候箱设高温(32℃)和适温(22℃)处理,探讨了高温对水稻籽粒氮代谢关键酶活性的影响及其与籽粒粗蛋白含量和各种氨基酸组成间的关系,并结合荧光定量PCR对水稻籽粒谷氨酰胺合成酶(GS) 2个同工型基因的表达及其温度响应进行了检测分析。结果表明,花后高温处理对谷草转氨酶(GOT)和谷丙转氨酶(GPT)的影响基本一致,均表现灌浆前期升高、后期下降的趋势,但花后高温处理下水稻籽粒中粗蛋白总量和各类氨基酸含量的增加,并不一定是其籽粒氮素物质的转运能力和蛋白质合成能力的增强所致;谷氨酰胺合成酶(GS)在高温处理下的生理活性普遍高于其相应时期的低温处理,其中,GS2是GS基因在水稻胚乳中高表达的一种同工型,在水稻灌浆后期的表达量甚至超过GS1,高温胁迫处理会通过改变GS1GS2基因在籽粒中的转录水平,从而对水稻籽粒灌浆中后期的GS活性产生调控。

关键词: 水稻, 高温, 氮代谢, 酶活性, 蛋白积累

Abstract: The influence of high temperature after flowering period on the activities of some enzymes, including glutamine synthetase (GS), glutamic-oxaloacetic transaminase (GOT)and glutamic-pyruvic transaminase (GPT) in developing grains, and also its relation to grain storage protein and amino acid accumulations were investigated by using two early-indica rice cultivars grown under two temperature regimes of daily average temperature 32℃ and 22℃, respectively, and expression responses of two GS isoform genes to temperature were detected by real-time fluorescence quantitative PCR(FQ-PCR). The results indicated that the effects of high temperature after flowering period on GOT and GPT activities showed the similar trend, with increasing at early grain filling stage and decreasing at late grain filling stage. However, the increase f total contents of crude protein and various amino acids under high temperature after flowering period were not always due to the enhancement of grain nitrogen transport capacity and protein synthesis ability. GS activity under high temperature was generally higher than that under temperature in the same period. GS2,one of the isoforms of GS gene, was highly expressed in rice endosperm. The expression levels of GS2 was even higher than that of GS1 in late grain filling stage, while high temperature stress regulated GS activity through changing GS1 and GS2 genes transcription level in grain.

Key words: Rice (Oryza sativa L.), High temperature, Nitrogen metabolism, Enzyme activity, Protein accumulation

[1]Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971–9975
[2]Prasad P V, Boote K J, Allen L H, Sheehy J E, Thomas L M G. Species, ecotye and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res, 2006, 95: 398–411
[3]Tashiro T, Warldaw F. The effect of high temperature on kernel dimension and the type and occurrence of kernel damage in rice. Aust J Agric Res, 1991, 42: 485–496
[4]Zhong L J, Cheng F M, Sun Z X, Zhang G P. The deterioration of eating and cooking quality caused by high temperature during grain filling in early–season indica rice cultivars. J Agron Crop Sci, 2005, 191: 218–225
[5]Cheng F M, Zhong L J, Zhao NC, Liu Y, Zhang G P. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Plant Growth Regul, 2005, 46:87–95
[6]Li M-Y(李木英), Shi Q-H(石庆华), Hu Z-H(胡志红), Pan X-H(潘晓华), Tan X-M(谭雪明). Effects of high temperature stress on activity of amylosynthease in endosperm of early indica rice varieties. Sci Agric Sin(中国农业科学), 2007, 40(8): 1622–1629(in Chinese with English abstract)
[7]Zakaria S, Mastuda T, Tajima S, Nitta Y. Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod Sci, 2002, 5: 160–168
[8]Huang Y-J(黄英金), Qi Y-X(漆映雪), Liu Y-B(刘宜柏), Chen D-Z(陈大洲). Effect of climatic factors on the contents of protein and four protein fractions in early rice during the milking and mature period. Chin J Agromet(中国农业气象), 2002, 23(2): 54–59 (in Chinese with English abstract)
[9]Liang C-G(梁成刚), Chen L-P(陈利平), Wang Y(汪燕), Liu J(刘佳), Xu G-L(许光利), Li T(李天). Effects of high temperature on key enzyme activities of nitrogen metabolism and protein. Chin J Rice Sci (中国水稻科学), 2010, 24(4): 398–402 (in Chinese with English abstract)
[10]Lea P J, Ireland R J. Plant amino acids. In: Singh B K. Nitrogen Metabolism in Higher Plants. New York: Marcel Dekker, 1999. pp 1–47
[11]Yamagata H, Tanaka K. The site of synthesis and accumulation of rice storage proteins. Plant Cell Physiol, 1986, 27: 135–145
[12]Zhang Z-L(张志良), Qu W-J(瞿伟菁). Physiology of Plant Experimental Guidance, 3rd edn (植物生理实验指导). Beijing: Higher Education Press, 2005. pp 167–169 (in Chinese)
[13]Zhang H-Y(张海燕), Dong H-T(董海涛), Yao H-G(姚海根), Xiang Y-W(向跃武), Tan X-L(谭学林), Li D-B(李德葆). Isolation of total RNA from rice endosperm and expression of important genes related to grain quality in rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2005, 19(2): 105–110 (in Chinese with English abstract)
[14]Rajeevan M S, Ranamukhaarachi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001, 25: 443–451
[15]Zou Q(邹琦). Physiology of Plant Experimental Guidance (植物生理学实验指导). Beijing: Chinese Agriculture Press, 2000. pp 129–130 (in Chinese)
[16]National Standard of PR China (中华人民共和国国家标准). Pretreatment Method for Determination of Amino Acids in Cereal Grains (谷物氨基酸测定的预处理方法) (GB7649-87). Beijing: Standards Press of China, 1987. pp 314–315 (in Chinese)
[17]Quan Q-Z(权清转), Chen Z-J(陈志杰), Zhang H-L(张赫莲), Liang Y-L(梁银丽), Zhang F(张锋). Study on amino acid composition of bagging cucumber in greenhouse. Amino Acids & Biotic Res Resour, 2004, 26: 12–13 (in Chinese with English abstract)
[18]Lam H M, Coschigano K T, Oliveira I C, Oliveria R M, Coruzzi G M. The Molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Biol, 1996, 47: 569–593
[19]Tashiro T, Warldaw F. The effect of high temperature on kernel dimension and the type and occurrence of kernel damage in rice. Aust J Agric Res, 1991, 42: 485–496
[20]Hamaker B R, Griffin V K. Effect of disulfide bond-containing protein on rice starch gelatinization and pasting. Cereal Chem, 1993, 70: 377–380
[21]Xiao H-H(肖辉海), Wang W-L(王文龙), Hao X-H(郝小花). Effects of high temperature on key enzyme activities related to nitrogen metabolism and protein content of early indica rice grain. Jiangsu J Agric Sci (江苏农业学报), 2010, 26(4):680–685(in Chinese with English abstract)
[22]Tao L-X(陶龙兴), Wang X(王熹), Liao X-Y(廖西元), Shen B(沈波), Tan H-J(谭慧娟), Huang S-W(黄世文). Effects of air temperature and sink-source strength on rice quality and some physiological traits. Chin J Appl Ecol(应用生态学报), 2006, 17(4): 647–652 (in Chinese with English abstract)
[23]Wei K-S(韦克苏), Cheng F-M(程方民), Dong H-T(董海涛), Zhang Q-F(张其芳), Liu K-G(刘奎刚), Cao Z-Z(曹珍珍). Microarray analysis of gene expression profile to grain storage metabolism in rice endosperm as affected by high temperature at filling stage. Sci Agric Sin (中国农业科学), 2010, 43(1): 1–11 (in Chinese with English abstract)
[24]Zhou G-Q(周广洽), Xu M-L(徐孟亮), Tan Z-Z(谭周镃), Li X-Z(李训贞). Effects of ecological factors on protein and amino acids in rice. Acta Ecol Sin (生态学报), 1997, 17(5): 537–542 (in Chinese with English abstract)
[25]Ma Q-L(马启林), Li Y-S(李阳生), Tian X-H(田小海), Yan S-Z(鄢圣之), Lei W-C(雷慰慈), Nakata N. Influence of high temperature stress on composition and accumulation configuration of storage protein in rice. Sci Agric Sin (中国农业科学), 2009, 42(2): 714–718 (in Chinese with English abstract)
[26]Miflin B, Habash D. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot, 2002, 53: 979–987
[27]Daubresse C M, Carrayol E, Valadier M H. The two nitrogen mobilisation and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta, 2005, 221: 580–588
[28]Tang X-R(唐湘如), Guan C-Y(官春云), Yu T-Q(余铁桥). The relationship between rice yielding, grain quality and substance metabolism. J Hunan Agric Univ (湖南农业大学学报), 1999, 25(4): 279–282 (in Chinese with English abstract)
[29]Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot, 2007, 58: 2319–2327
[30]Dubois F, Brugiere N, Sangwan R S, Hirel B. Localization of tobacco cytosolic glutamine synthetase enzymes and the corresponding transcripts shows organ and cell-specific patterns of protein synthesis and gene expression. Plant Mol Biol, 1996, 31: 803–817
[31]Ochs G, Schoth G, Trischler M, Kosemund K, Wild A. Complexity and expression of the glutamine synthetase multigene family in the amphidiploid crop Brassica napus. Plant Mol Biol, 1999, 39: 395–405
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!