欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (04): 725-731.doi: 10.3724/SP.J.1006.2012.00725

• 耕作栽培·生理生化 • 上一篇    下一篇

一种抗鸟害水稻变异系颖壳SEM观察及硅含量分析

姬生栋*,王海莎,朱德来,侯磊磊,魏松浩,张翔宇,张羽,李春艳,马亚峰,郭丹丹   

  1. 河南师范大学生命科学学院, 河南新乡 453007
  • 收稿日期:2011-09-26 修回日期:2012-01-19 出版日期:2012-04-12 网络出版日期:2012-02-13
  • 通讯作者: 姬生栋, E-mail: jisd99@126.com, Tel: 0373-3325645
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2008ZX08001-006),河南省重大科技专项(091100110402-01)和河南省自然科学基金项目(092300410082)。

Observation by Scanning Electron Microscope (SEM) and Analysis of Silicon Content on Glume of Rice Variant Strain with Bird Disaster Resistance

JI Sheng-Dong*,WANG Hai-Sha,ZHU De-Lai,HOU Lei-Lei,WEI Song-Hao,ZHANG Xiang-Yu,ZHANG Yu,LI Chun-Yan,MA Ya-Feng,GUO Dan-Dan   

  1. College of Life Sciences, Henan Normal University, Xinxiang 453007, China
  • Received:2011-09-26 Revised:2012-01-19 Published:2012-04-12 Published online:2012-02-13
  • Contact: 姬生栋, E-mail: jisd99@126.com, Tel: 0373-3325645

摘要: 抗鸟害水稻材料是一种稀缺的种质资源, 研究其稻谷颖壳的表面结构(颖壳稃尖闭合程度, 稃毛的长度、直径和密度, 颖壳包裹米粒松紧度), 以及与颖壳机械强度和韧性相关的硅(Si)元素含量, 旨在为抗鸟害水稻新种质的开发利用和理论研究提供依据。利用扫描电镜和能谱技术, 观察分析了一种已稳定遗传至第10代的抗鸟害水稻变异品系和3个对照水稻品种稻谷颖壳表面的细胞结构和硅元素含量, 结果表明: (1) 变异品系颖壳稃尖闭合程度及颖壳的中上部稃毛长度、直径、密度均显著大于对照;(2) 对照颖壳与米粒之间的间隙明显大于变异品系;(3) 变异品系颖壳外表面的Si含量显著低于对照, 而内表面Si含量明显高于对照, 内外表面Si含量之差明显低于对照。说明抗鸟害水稻材料的稻谷颖壳表面结构和硅元素含量与普通水稻存在显著差异, 为培育抗鸟害水稻新品种提供了有用指标。

关键词: 水稻, 颖壳, 扫描电镜, 能谱

Abstract: Bird-disaster-resistantriceisakindofscarcegermplasmresources, and the research on its glume surface structure, such as the close degree of glume tip, the length, diameter and density of pubescence, as well as the silicon (Si) content related with glume mechanical strength could provide a theoretical basis for the exploitation and utilization of the bird-resistant rice variants.Inthe present research,thesurfacestructureandsilicon(Si)contentofglumesofastablyinheritedbird-resistantvariantof rice(the10thgeneration)wereinvestigatedviascanningelectronmicroscopy(SEM)andenergyspectrumtechnology.Comparedwiththreecontrolstrains,thelength,diameteranddensityofpubescenceontheuppermiddlesectionofglumeaswellastheclosedegreeofglumetipweresignificantlygreaterforthevariant,andtheinterspacesbetweenglumesandgrainsweresignificantlysmaller.ThevariantshowedahigherSicontentintheoutersurfaceofglumethanthethreecontrols,whilealowercontentintheirinnersurface.Theseresultsindicatethatthecharacteristicsofthe bird-disaster-resistant variantofricearesignificantlyassociatedwiththesurfacestructureanditsSicontent ofglume,andtheresultsarealsousefulfordevelopingandutilizing new.

Key words: Rice, Glume, Scanning electron microscopy, Energy spectrum, Silicon

[1]Liu P-P(刘培培), Zhao X-R(赵欣如), Zhang H-J(张红娟), Ding C-Q(丁长青), Sui J-L(隋金玲). Progress on studying of common agricultural harmful bird and prevention in China. Jiangsu Agric Sci (江苏农业科学), 2010, (2): 139–141 (in Chinese)

[2]Mo Y(莫永), Zhu Q-L(朱秋莲), Wu J(吴峻). The methods of prevent harmful bird in crops breeding. Anhui Agric Sci Bull (安徽农学通报), 2008, 14(6): 81–82 (in Chinese)

[3]Chao W-J(晁无疾), Guan Z-X(管仲新). Grapes bird disaster and defense. China Fruits (中国果树), 2005, (3): 50–51 (in Chinese)

[4]Zhang Z(张智), Zhang X(张肖), Lu J(卢静), He X-L(和雪莲), Cui P (崔鹏), Sui J-L(隋金玲), Ding C-Q(丁长青), Zhao X-R(赵欣如). Analysis on the characteristics of bird damage in cherry orchard in Beijing region. Modern Agric Sci & Technol (现代农业科技), 2010, (22): 138–139 (in Chinese)

[5]Sun Y(孙毅), Hallgren L. Relationship of sorghum testa characters with tannin content. Acta Agric Boreali-Sin (华北农学报), 1988, 3(4): 40–44 (in Chinese with English abstract)

[6]Liu M-H(刘明慧), Gao Q-X(高秋霞), Lü J-C(吕金仓), Guo Y-R(郭雅茹). The research of sorghum anti-bird varieties. Plant Prot (植物保护), 1994, 20(5): 42–43 (in Chinese)

[7]Gan X-W(甘晓伟), Luo S-M(骆世明). Disease-, insect pest-, and weed control of rice production in China by using biodiversity technology. Chin J Ecol (生态学杂志), 2008, 27(5): 853–857 (in Chinese with English abstract)

[8]Liu X(刘旭). Biological diversity- the challenges and countermeasures on germplasm resources of China. World Sci Technol—Mod Trad Chin Med (世界科学技术——中医药现代化), 2005, 7(4): 101–104 (in Chinese)

[9]Zhang W-X(张文绪). Studies on chemical composition and structure of lemma in rice. Acta Agron Sin (作物学报), 1999, 25(5): 591–595 (in Chinese with English abstract)

[10]Xing X-R(邢雪荣), Zhang L(张蕾). Review of the studies on silicon nutrition of plants. Chin Bull Bot (植物学通报), 1998, 15(2): 33–40 (in Chinese with English abstract)

[11]Fang J-Y(房江育), Ma X-L(马雪泷). Progress of silicon improving piant resistance to stress. Chin Agric Sci Bull (中国农学通报), 2005, 21(11): 304-306 (in Chinese with English abstract)

[12]Yang B-Y(杨秉耀), Chen X-F(陈新芳), Liu X-D(刘向东), Guo H-B(郭海滨). Observation of silicon cells on the leave surface in different varieties of rice. J Chin Electron Microscopy Society (电子显微学报), 2006, 25(2): 146–150 (in Chinese with English abstract)

[13]Shen H-S(沈恒胜), Chen J-S(陈君堔), Huang J-H(黄进华), Tang B-S(汤葆莎). Microstructure and distribution of silica bodies in rice epidermis. J Fujian Agric & For Univ (Nat Sci Edn)(福建农林大学学报•自然科学版), 2005, 34(2): 137–140 (in Chinese with English abstract)

[14]Fang J-Y(房江育), Ma X-L(马雪泷). Energy dispersive x-ray and micro-infrared spectroscopic analysis of organic compounds in rice silica bodies. Chin J Tropi Crops (热带作物学报), 2005, 26(4): 94–98 (in Chinese with English abstract)

[15]Li W-G(李卫国), Ren Y-L(任永玲). The effects of combined N-P-K-Si fertilization on rice yield and component factors. J Shanxi Agric Sci (山西农业科学), 2001, 29(1): 53–58 (in Chinese with English abstract)

[16]Nakata Y, Ueno M, Kihara J, Ichii M, Taketa S, Arase S. Rice blast disease and susceptibility to pests in a silicon uptake-deficient mutant lsil of rice. Crop Prot, 2008, 27: 865–868

[17]Zhou G-R(周广荣). Primary research and observation of plant samples by SEM cooling stage. J Chin Electron Microscopy Society (电子显微学报), 2009, 28(2): 186–189 (in Chinese with English abstract)

[18]Ding Z-L(丁志林), Li Z(李忠), Wang X-Y(王秀彦), Xu X-Y(徐晓艺). About the bird disaster of cereal crops and its prevention. Crops (作物杂志), 1998, (1): 39(in Chinese)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!