作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1665-1671.doi: 10.3724/SP.J.1006.2012.01665
胡群文1,2,辛霞1,陈晓玲1,刘旭1,*,卢新雄1,*
HU Qun-Wen1,2,XIN Xia1,CHEN Xiao-Ling1,LIU Xu1,*,LU Xin-Xiong1,*
摘要: 测定在南昌室温贮藏9年的含水量为10.6%、7.0%、6.0%、5.0%、4.0%和3.0%的水稻种子的种子生活力和活力、浸出物电导率, 以及胚中抗氧化酶活性、脂质过氧化产物丙二醛(MDA)含量, 以期了解水稻种子在室温贮藏条件下的适宜含水量及其生理基础。结果表明, 含水量为5.0%~6.0%的种子在室温贮藏9年后发芽率仍高于50%, 其他含水量种子的发芽率均显著低于50%, 可认为5.0%~6.0%是室温贮藏的适宜含水量。适宜含水量贮藏9年的种子吸胀12 h后, 胚中抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)活性显著高于其他含水量种子, 与在-18℃贮藏9年的种子(对照)相比, 活性相当或下降幅度最小;谷胱甘肽还原酶(GR)和超氧化物歧化酶(SOD)活性变化不显著。表明在适宜含水量下保持较高的APX和CAT活性, 可能是延缓种子生活力下降的重要因素之一。而种子浸出物电导率和胚中MDA含量等未表现出与种子生活力和含水量之间有显著相关性。此外含水量3.0%水稻种子的生活力和活力显著低于其他含水量水平的种子, 表明过度干燥会产生干燥损伤。
[1]Ellis R H, Hong T D, Roberts E H. A comparison of the low-moisture-content limit to the logarithmic relation between seed moisture and longevity in twelve species. Ann Bot, 1989, 63: 601–611[2]Ellis R H, Hong T D, Roberts E H. The low-moisture-content limit to the negative logarithmic relation between longevity and moisture content in three subspecies of rice. Ann Bot, 1992, 69: 53–68[3]Ellis R H, Hong T D. Temperature sensitivity of the low-moisture-content limit to negative seed longevity-moisture content relationships in hermetic storage. Ann Bot, 2006, 97: 785–791[4]Zheng G H, Jing X M. Ultradry storage cuts cost of gene bank. Nature, 1998, 393: 23–25[5]Vertucci C W, Roos E E. Theoretical basis of protocols for seed storage: II. The influence of temperature on optimal moisture levels. Seed Sci Res, 1993, 3: 201–213[6]Walters C, Pammenter N W, Berjak P, Crane J. Desiccation damage, accelerated ageing and respiration indesiccation tolerant and sensitive seeds. Seed Sci Res, 2001, 11: 135–148[7]Lu X-X(卢新雄), Chen X-L(陈晓玲). Progress of conservation and research of crop germplasm resources in China. Sci Agri Sin (中国农业科学), 2003, 36(10): 1125–1132 (in Chinese with English abstract)[8]Hu Q-W(胡群文), Lu X-X(卢新雄), Xin P-P(辛萍萍), Chen X-L(陈晓玲), Zhang Z-E(张志娥), Xin X(辛霞), Liu X(刘旭). The optimal moisture content and survival characteristics of rice seed stored at six climatic zones under room temperature. Chin J Rice Sci (中国水稻科学), 2009, 23(6): 621–627 (in Chinese with English abstract)[9]Gidrol X, Noubhani A, Mocquot B, Fournier A, Pradet A. Effect of accelerated aging on protein synthesis in two legume seeds. Plant Physiol Biochem, 1988, 26: 281–288[10]Gutierrez G, Cruz F, Moreno J, Gonzalez-Hernandez V A, Vasquez-Ramos J M. Natural and artificial seed ageing in maize germination and DNA synthesis. Seed Sci Res, 1993, 3: 279–285[11]McDonald M B. Seed deterioration: physiology, repair and assessment. Seed Sci Technol, 1999, 27: 177–237[12]Bailly C. Active oxygen species and antioxidants in seed biology. Seed Sci Res, 2004, 14: 93–107[13]Hendry G A F. Oxygen, free radical processes and seed longevity. Seed Sci Res, 1993, 3: 141–153[14]Murthy U M N, Liang Y H, Kumar P P, Sun W Q. Nonenzymatic protein modification by the Maillard reaction reduces the activities of scavenging enzymes in Vignia radiata. Physiol Plantarum, 2002, 115: 213–220[15]Goel A, Goel A K, Sheoran I S. Changes in oxidative stress enzymes during artificial aging in cotton (Gossypium hirsutum L.) seeds. J Plant Physiol, 2003, 160: 1093–1100[16]Pukacka S, Ratajczak E. Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity. J Plant Physiol, 2005, 162: 873–885[17]Bailly C, Benamar A, Corbineau F, Come D. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated ageing. Physiol Plantarum, 1996, 97: 104–110[18]Bailly C, Benamar A, Corbineau F, Come D. Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds. Physiol Plantarum, 1998, 104: 646–652[19]Kibinza S, Vinel D, Come D, Bailly C, Corbineau F. Sunflower seed deterioration as related to moisture content during ageing, energy metabolism and active oxygen species scavenging. Physiol Plantarum, 2006, 128: 496–506[20]Torres M, De Paula M, Perez-Otaola M, Darder M, Frutos G, Martinez-Honduvilla C J. Ageing-induced changes in glutathione system of sunflower seeds. Physiol Plantarum, 1997, 101: 807–814[21]The International Seed Testing Association (ISTA). International Rules for Seed Testing. Bassersdorf: The International Seed Testing Association, 1996[22]Hodges D M, DeLong J M, Forney C F, Prange R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604–611[23]Nakano Y, Asada K. Hydrogen peroxide scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867–880[24]Aebi H E. Catalase. In: Bergmeyer H U ed. Methods of Enzymatic Analysis. Weiheim: Verlag Chmie, 1983, Vol 3. pp 273–289[25]Halliwell B, Foyer C H. Properties and physiological function of a glutathione redutase purified from spinach leaves by affinity chromatography. Planta, 1978, 139: 388–396[26]Schickler H, Caspi H. Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Plant Physiol, 1999, 105: 39–44[27]Lehner A, Mamadou N, Poels P, Come D, Bailly C, Corbineau F. Changes in soluble carbohydrates, lipid peroxidation and antioxidant enzyme activities in the embryo during ageing in wheat grains. J Cereal Sci, 2008, 47: 555–565[28]Hu W-M(胡伟民), Duan X-M(段宪明), Ruan S-L(阮松林). Effects of ultra-dry treatment and long-term storage on viability and vigor of corn and watermelon seeds. J Zhejiang Univ (Agric & Life Sci)(浙江大学学报•农业与生命科学版), 2002, 28(1): 37–41 (in Chinese with English abstract)[29]Hu W-M(胡伟民), Hu J(胡晋), Song W-J(宋文坚), Duan X-M(段宪明). Effects of long-term ultradry storage on viability and vigor of different kinds of rice seeds. Chin J Rice Sci (中国水稻科学), 2003, 17(4): 379–382 (in Chinese with English abstract)[30]Lee Y P, Baek K H, Lee H S. Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot, 2010, 61: 2499–2506 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|