欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1900-1907.doi: 10.3724/SP.J.1006.2012.01900

• 耕作栽培·生理生化 • 上一篇    下一篇

细胞分裂素对甘蓝型油菜种皮色泽形成的影响

万华方,卢东,梁颖*,孙夫军,李加纳   

  1. 西南大学农学与生物科技学院 / 南方山地农业工程研究中心, 重庆 400715
  • 收稿日期:2012-01-10 修回日期:2012-06-10 出版日期:2012-10-12 网络出版日期:2012-07-27
  • 通讯作者: 梁颖, E-mail: yliang@swu.edu.cn, Tel: 023-68250701
  • 基金资助:

    本研究由国家科技支撑计划项目(2009BADA8B01, 2010BAD01B08)和国家自然科学基金项目(31171177)资助。

Effect of Cytokinins on Formation of Seed Coat Colour in Oilseed Rape (Brassica napus)

WAN Hua-Fang,LU Dong,LIANG Ying*,SUN Fu-Jun,LI Jia-Na   

  1. College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
  • Received:2012-01-10 Revised:2012-06-10 Published:2012-10-12 Published online:2012-07-27
  • Contact: 梁颖, E-mail: yliang@swu.edu.cn, Tel: 023-68250701

摘要:

以3对遗传背景相同的甘蓝型黄籽和黑籽油菜为材料,研究甘蓝型油菜种子发育过程中內源细胞分裂素(ZR)、各种色素、色素合成相关酶活性的动态变化及其相互关系,并以外源细胞分裂素类物质(6-BA)加以验证,结果表明,相同遗传背景下的黄籽油菜种子的ZR含量较黑籽油菜高,花后27 d比黑籽高4~5倍; 在甘蓝型黄籽油菜种子发育前期(27 d阶段)种子中细胞分裂素含量越高其成熟种子色泽就越浅; 种子的ZR含量与种皮中类黄酮、花色素、黑色素含量显著负相关,与多酚含量显著正相关,与酪氨酸酶显著负相关,与苯丙氨酸解氨酶、多酚氧化酶无显著相关性; 施用外源细胞分裂素6-BA (50 mg L–1)可显著提高黄籽油菜黄籽度,明显降低甘蓝型油菜种皮中黑色素、花色素、类黄酮含量,对黑籽种皮的多酚含量无显著影响,但可增加黄籽种皮多酚含量; 6-BA处理可降低油菜种皮中酪氨酸酶、苯丙氨酸解氨酶活性,对多酚氧化酶活性无显著影响。表明细胞分裂素可减缓甘蓝型油菜种皮各色素合成,从而影响黄籽油菜色泽;该过程可能是通过调控色素合成的相关酶活性来实现的。

关键词: 油菜, 种皮色泽, 细胞分裂素, 色素, 6-BA

Abstract:

The seed color of yellow-seeded rape is closely related to seed maturity and plant hormone plays an important role in the regulation of seed maturity. This paper mainly focuses on the relationship between the cytokinin and the seed coat color of oilseed rape. Three pairs of rape seed with the same genetics background but different seed coat colors (yellow-seeded and black-seeded oil seed) were used to determine the dynamics of endogenous cytokinin (ZR), pigments and the activities of enzymes, as well as the aforementioned indices under the treatment with 6-BA. The results showed that the content of ZR in yellow-seeded rape was 4–5 times higher than that in black-seeded oneat 27 days after flowering,which was coupled with the less color of the rape seed; the content of ZR was negatively correlated with that of flavonoids, anthocyanin and melanin,and significantly positively correlated with polyphenols. Furthermore, it was significantly negatively correlated with tyrosinase activity, and not with the activity of phenylalnine ammonialyase or polyphenoloxidase; exogenous cytokinin (6-BA, 50 mg L–1) improved the color degree of the yellow seeds, and induced the decrease of the contents of melanin, anthocyanidin in seeds, it had no obvious effect on the black-seeded ones, but it increased the polyphenols content in the yellow seeds; the application of 6-BA decreased the activities of tyrosinase (TYR) and phenylalanine ammonia lyase (PAL). However, the activity of polyphenol oxidase (PPO) was not changed. Therefore, we concluded that cytokinin may significantly influence the seed coat color, and delay the pigment synthesis in the seed coat of yellow seeds through regulating the activities of enzymes involved in the pigment synthesis.

Key words: Rape, Seed coat color, Cytokinin, Pigment, 6-BA

[1]Xiao D-R(肖达人), Liu H-L(刘后利). The correlation analysis of seed coat color and seed oil content in Brassica napus. Acta Agron Sin (作物学报), 1982, 8(4): 245–254 (in Chinese with English abstract)



[2]Ye X-L(叶小利), Li J-N(李加纳), Tang Z-L(唐章林), Liang Y(梁颖), Chen L(谌利). Study on seed coat color and related characters of Brassica napus. Acta Agron Sin (作物学报), 2001, 27(5): 550–556 (in Chinese with English abstract)



[3]Ye X-L(叶小利), Li-J-N(李加纳), Tang-Z-L(唐章林), Chen L(谌利). The different color between black seed and yellow seed coat during seed development in Brassica napus: II. The changes and relating of Melanin, tyrosinase and tyrosinase. Chin J Oil Crop Sci (中国油料作物学报), 2001, 23(3): 38–41 (in Chinese with English abstract)



[4]Ye X-L(叶小利), Li J-N(李加纳), Tang Z-L(唐章林), Chen L(谌利). The different color between black seed and yellow seed coat during seed development in Brassica napus: I. the changes and relating of anthocyanin, phenylalanine and phenylalanine ammonialyase. Chin J Oil Crop Sci (中国油料作物学报), 2001, 23(2): 14–18 (in Chinese with English abstract)



[5]Guan C-Y(官春云). High-yield Rapeseed Cultivation Techniques (油菜优质高产栽培技术). Changsha: Hunan Science and Technology Press, 1997 (in Chinese)



[6]Pirie A, Mullins M G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissue treated with sucrose, nitrate and abscisic acid. Plant Physiol, 1976, 58: 468–472



[7]Zhou X-Z(周旭章), Wei K-H(魏开华), Chen C-H(陈朝辉), Xie K(谢凯), Zhu J-J(朱建军). Research of extracting melanin from black sesame. J Chem Ind For Prod (林产化工通讯), 1997, (4): 17–19 (in Chinese)



[8]Zucker M. Light and its relation to chlorogenic acid synthesis in patato tuber tissue. Plant Physiol, 1965, 40: 779–784



[9]Tang S-G(唐尚格), Xia Y-X(夏玉先), Pei Y(裴炎). Indirect enzyme-linked immunosorbent assay endogenous plant hormones. J Southwest Agric Univ (西南农业大学学报), 1991, 13(2): 183–186 (in Chinese with English abstract)



[10]Li Y-W(李雨薇), Xiao L-T(肖浪涛). Detection technology of status and development for plant hormones. Life Sci Instr (生命科学仪器), 2007, 5(12): 10–13 (in Chinese with English abstract)



[11]Martin C A, Sharp W P. Alterations in leaf morphology of two landscape shrubs in response to disparate climate and paclobutrazol. Hort Sci, 1994, 29: 1321–1325



[12]Jones D H. Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development. Phytochemistry, 1984, 23: 1349–1359



[13]Yan G-H(闫国华), Gan L-J(甘立军), Sun R-H(孙瑞红). Gibberellin and cytokinin regulation of apple fruit growth mechanism of early. Acta Hort Sin (园艺学报), 2000, 27(1): 11–16 (in Chinese with English abstract)



[14]Pomerantz S H. Separation, purification, and properties of two tyrosinase from hamster melanoma. J Biol Chem, 1963, 238: 2351–2356



[15]Zhang Q(张琪), Cong P(丛鹏), Peng L(彭丽). Path Analysis in Excel and SPSS. Agric Network Inf (农业网络信息), 2007, (3): 109–111



[16]Gao X Q, Kong F J, Wang F, Matsuura H, Yoshihara H. Inhibitory role of gibberellins in theobroxide-induced flowering of Pharbitis nil. J Plant Physiol, 2006, 163: 398–404



[17]Liang Y-L(梁艳丽), Liang Y(梁颖), Li J-N(李加纳), Chen L(谌利). Comparison of the coat characteristics between yellow seed and black seed in Brassica napus. Chin J Oil Crop Sci (中国油料作物学报), 2001, 23(3): 38–41 (in Chinese with English abstract)



[18]Suzukieta1 R M. Thidiazuron influences the endogenous levels of cytokinins and IAA during the flowering of isolated shoots of Dendrobiu. J Plant Physiol, 2004, 161: 929–935



[19]Ye X-L(叶小利), Li X-G(李学刚), Li J-N(李加纳). Formation mechanism of melanin in Brassica napus seed coat. Acta Agron Sin (作物学报), 2002, 28(5): 638–643 (in Chinese with English abstract)



[20]Bureau S, Renard C M G C, Reich M, Ginies C, Audergon J M. Change in anthocyanin concentrations in red apricot fruits during ripening. LWT-Food Sci Technol, 2009, 42: 372–377

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[10] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[11] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[12] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[13] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[14] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[15] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!