欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 1949-1959.doi: 10.3724/SP.J.1006.2012.01949

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

粳稻超优1号背景回交导入系的耐热性筛选与评价

孟丽君1,2,马秀芳3,**,唐志强3,沈枫3,崔彦茹1,柴路1,陈凯1,徐建龙1,*,黎志康1,*
  

  1. 1 沈阳农业大学 / 农业部作物生理生态和遗传育种重点实验室, 辽宁沈阳110161; 2 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京100081; 3辽宁省农业科学院稻作研究所, 辽宁沈阳110101
  • 收稿日期:2012-03-29 修回日期:2012-06-10 出版日期:2012-11-12 网络出版日期:2012-09-01
  • 通讯作者: 徐建龙, E-mail: xujlcaas@yahoo.com.cn; 黎志康, E-mail: zhkli1953@126.com
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目[2011-G2B(2)]和国家高技术研究发展计划(863计划)项目(2012AA101101)资助。

Screening and Evaluation of Heat Tolerance of Introgression Lines with Japonica Chaoyou 1 Background

MENG Li-Jun1,2,MA Xiu-Fang3,**,TANG Zhi-Qiang3,SHEN Feng3,CUI Yan-Ru1,CAI Lu1,CHEN Kai1,XU Jian-Long1,*,LI Zhi-Kang1,*   

  1. 1 Shenyang Agricultural University / Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang 110161, China;
    2 Institute of Crop Sciences / National Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Rice Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110101, China
  • Received:2012-03-29 Revised:2012-06-10 Published:2012-11-12 Published online:2012-09-01
  • Contact: 徐建龙, E-mail: xujlcaas@yahoo.com.cn; 黎志康, E-mail: zhkli1953@126.com

摘要:

全球气候变暖不可避免地影响水稻的生产。本研究以粳稻品种超优1号为轮回亲本与9个来自不同国家的供体品种杂交培育的BC2F4回交导入群体为材料, 通过开花期高温胁迫, 共初筛到124个耐高温单株; 以粳稻为供体的回交导入群体出现耐热个体的频率高于籼稻供体的导入群体, 表明粳稻资源中同样存在耐热有利基因。经对初筛后代的耐热性重复鉴定和在正常条件下的性状评价, 发现有80个株系的结实率显著高于轮回亲本, 耐热性选择效率为64.5%, 这些耐热导入系的产量及其相关性状在高温胁迫和正常条件下均出现广幅分离, 从中鉴定出耐热性和产量性状均显著好于轮回亲本的8个优良导入系。在3个耐热导入系的聚合F2群体中, 筛选出耐热个体的平均结实率在80%以上, 极显著高于轮回亲本和最高聚合亲本, 从中获得106株耐热性极显著好于聚合亲本的单株, 显示出较理想的耐热性聚合效果。通过对耐热导入系和轮回亲本在正常和高温胁迫条件下的产量以及相关性状的表型比较分析, 有助于提高对水稻耐热性状筛选中的供体选择、选择效率和筛选方法等一些重要问题的认识。本研究获得的高产耐热聚合系, 将为水稻耐热有利基因发掘和耐热性标记辅助选择聚合育种提供宝贵材料。

关键词: 水稻, 耐热性, 高温胁迫, 导入系, 聚合育种

Abstract:

Global climatic warming inevitably affects rice production. Nine BC2F4 backcross introgression populations derived from crosses between a japonica variety Chaoyou1 (CY1) as the recurrent parent (RP) and nine donor parents collected from different countries were screened for heat tolerance (HT) at flowering stage. A total of 124 introgression lines (ILs) were selected based on seed setting rate in single plant under high temperature (38℃). The results showed that: introgression lines (ILs) had better HT than Chaoyou1, and the frequency of plants with HT derived from the ILs with donors of japonica was higher than that with donors of indica, demonstrating the potential of using genes from japonica varieties to improve HT of breeding line. Progeny testing of the 124 ILs under heat stress and normal condition revealed a high selection efficiency of 64.5% for HT and 80 ILs had higher SF than RP. The 124 selected ILs presented wide segregations for the tested traits in replicated experiments under stress and normal conditions and allowed us to identify eight promising ILs that had greatly improved HT and higher yield than CY1. HT-tolerant plants selected from three pyramiding populations had an average SF of more than 80%, which was significantly higher than that of RP and the highest pyramiding parent. From them, 106 plants with significantly better HT than pyramiding parent were selected, showing ideal pyramiding effect on HT. Detailed comparisons between the ILs and CY1 for yield performances and related traits under heat stress and non-stress conditions provided useful information and better understanding in donor selection, selection efficiency and screening method for HT in the BC breeding process. The selected lines with HT will become valuable materials for gene mining and molecular breeding for improvement of HT by high efficient pyramiding of favorable genes.

Key words: Rice (Oryza sativa L.), Heat tolerance, High temperature stress, Introgression line, Pyramiding breeding

[1]Maraseni T N, Mushtaq S, Maroulis J. Greenhouse gas emissions from rice farming inputs: a cross-country assessment. J Agric Sci, 2009, 147: 117-126



[2]Smith P, Olesen J E. Synergies between the mitigation of, and adaptation to, climate change in agriculture. J Agric Sci, 2010, 148: 543-552



[3]Watanabe T, Kume T. A general adaptation strategy for climate change impacts on paddy cultivation: special reference to the Japanese context. Paddy Water Environ, 2009, 7: 313-320



[4]Yin X, Kroff M J, Goudriann J. Differential effects of day and night temperature on development to flowering in rice. Ann Bot, 1996, 77: 203-213



[5]Peng S, Huang J, Sheehy J E, Laza R C, Visperas R M, Zhong X, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Nat Acad Sci USA, 2004, 101: 9971-9975



[6]Zhang G-L(张桂莲), Chen L-Y(陈立云), Zhang X-T(张顺堂), Huang M(黄明), Tang W-B(唐文邦), Lei D-Y(雷东阳), Li M-H(李梅华), He Z-Z(贺治洲). Effects of high temperature stress on rice flower organ and yield components and grain quality. J Hunan Agric Univ (湖南农业大学学报), 2007, 33(20): 132-136 (in Chinese with English abstract)



[7]Jagadish S V K, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot, 2007, 58: 1627-1635



[8]Matsui T, Namuco O S, Ziska L H, Horie T. Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Res, 1997, 51: 213-219



[9]Matsui T, Kobayasi K, Kagata H, Horie T. Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot and humid condition. Plant Prod Sci, 2005, 8: 109-114



[10]Matsui T, Omasa K. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot, 2002, 89: 683-687



[11]Zhu C L, Xiao Y H, Wang C M, Jiang L, Zhai H Q, Wan J M. Mapping QTL for heat-tolerance at grain filling stage in rice. Rice Sci, 2005,1: 33-38



[12]Larsen R J, Marx M L. An Introduction to Mathematical Statistics and Its Applications, 3rd edn. New Jersey: Prentice Hall Inc., 2000. pp 505-507



[13]Yan C, Ding Y, Wang Q, Liu Z, Li G, Muhammad I, Wang S. The impact of relative humidity, genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seed setting of rice. J Agric Sci, 2010, 148: 329-339



[14]Jagadish S V K, Cairns J, Lafitte R, Wheeler T R, Price A H, Craufurd P Q. Genetic analysis of heat tolerance at anthesis in rice. Crop Sci, 2010, 50: 1633-1641



[15]Prasad P V V, Boote K J, Allen L, Sheehy J E, Thomas J M G. Species. Ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res, 2006, 95: 398-411



[16]Zhao Z-G(赵志刚), Jiang L(江玲), Xiao Y-H(肖应辉), Zhang W-W(张文伟), Zhai H-Q(翟虎渠), Wan J-M(万建民). Identification of QTLs for heat tolerance at the booting stage in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2006, 32(5): 640-644 (in Chinese with English abstract)



[17]Zhu C-L(朱昌兰), Xiao Y-H(肖应辉), Wang C-M(王春明), Jiang L(江玲), Zhai H-Q(翟虎渠), Wan J-M(万建民). Mapping QTLs for heat tolerance during grain filling in rice. Chin J Rice Sci (中国水稻科学), 2005, 9(2): 117-121 (in Chinese with English abstract)



[18]Tang R-S(汤日圣), Zheng J-C(郑建初), Chen L-G(陈留根), Zhang D-D(张大栋), Jin Z-Q(金之庆), Tong H-Y(童红玉). Effects of high temperature on grain filling and some physiological characteristic in flag leaves of hybrid rice. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2005, 31(6): 657-662 (in Chinese with English abstract)



[19]Tabata M, Hirabayashi H, Takeuchi Y, Ando I, Iida Y, Ohsawa R. Mapping of quantitative trait loci for the occurrence of white-back kernels, associated with high temperatures during the ripening period of rice (Oryza sativa L.). Breed Sci, 2007, 57: 47-52



[20]Zhu C-L(朱昌兰), Jiang L(江玲), Zhang W-W(张文伟), Wang C-M(王春明), Zhai H-Q(翟虎渠), Wan J-M(万建民). Identifying QTLs for thermo-tolerance of amylose content and gel consistency in rice. Chin J Rice Sci (中国水稻科学), 2006, 20(3): 248-252 (in Chinese with English abstract)



[21]Li Z K, Xu J L. Breeding for drought and salt tolerant rice (Oryza sativa L.): progress and perspectives. In: Jenks M A, Hasegawa P M, Jain S M, eds. Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. The Netherlands: Springer, 2007. pp 531-564



[22]Simmonds N W. Decentralized selection. Sugar Cane, 1984,6: 8-10



[23]Li Z-K(黎志康). Strategies for molecular rice breeding in China. Mol Plant Breed (分子植物育种), 2005, 3(5): 603-608 (in Chinese with English abstract)



[24]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z, Rey J D, Vijayakumar C H M, Maghirang R, Zheng T Q, Zhu L H. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice(Oryza sativa L.). Plant Mol Biol, 2005, 59: 33-52



[25]Zhou Z(周政), Li H(李宏), Sun Y(孙勇), Huang D-Q(黄道强), Zhu L-H(朱苓华), Lu D-C(卢德城), Li K-H(李康活), Xu J-L(徐建龙), Zhou S-C(周少川), Li Z-K(黎志康). Effect of selection for high yield, drought and salinity tolerances on yield-related traits in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2010, 36 (10): 1725-1735 (in Chinese with English abstract)



[26]Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaykumar C H M, Gao Y M, Domingo Maghirang J R, Yu S B, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res, 2006, 97: 66-76



[27]Sun Y(孙勇), Zang J-P(藏金萍), Wang Y(王韵), Zhu L-H(朱苓华), Mohammadhosein F, Xu J-L(徐建龙), Li Z-K(黎志康). Mining favorable salt-tolerance QTL from rice germplasm using a backcrossing introgression line population. Acta Agron Sin (作物学报), 2007, 33(10): 1611-1617 (in Chinese with English abstract)



[28]Zhang F(张帆), Hao X-B(郝宪彬), Gao Y-M(高用明), Hua Z-T(华泽田), Ma X-F(马秀芳), Chen W-F(陈温福), Xu Z-J(徐正进), Zhu L-H(朱苓华), Li Z-K(黎志康). Improving seedling cold tolerance of japonica rice by using the “hidden diversity” in indica rice germplasm in a backcross breeding program. Acta Agron Sin (作物学报), 2007, 33(10): 1618-1624 (in Chinese with English abstract)



[29]Kang L(康乐), Li H(李宏), Sun Y(孙勇), Lu D-C(卢德城), Zhang F(张帆), Huang D-Q(黄道强), Xu J-L(徐建龙), Wang Z-D(王志东), Zhu L-H(朱苓华), Gao Y-M(高用明), Fu B-Y(傅彬英), Li K-H(李康活), Zhou Y-L(周永力), Zhou S-C(周少川), Li Z-K(黎志康). Genetic dissection of yield potential in rice (Oryza sativa L.) using introgression lines. Acta Agron Sin (作物学报), 2008, 34(9): 1500-1509 (in Chinese with English abstract)



[30]Meng L-J(孟丽君), Lin X-Y(林秀云), Cui Y-R(崔彦茹), Chen K(陈凯), Sun Y(孙勇), Zhu L-H(朱苓华), Xu J-L(徐建龙), Li Z-K(黎志康). Identification and screening of salt and alkaline tolerance in rice using advanced backcross introgression populations. Mol Plant Breed (分子植物育种), 2010, 8(6): 1142-1150 (in Chinese with English abstract)



[31]He Y X, Zheng T Q, Hao X B, Wang L F, Gao Y M, Hua Z T, Zhai H Q, Xu J L, Xu Z J, Zhu L H, Li Z K. Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding program. Plant Breed, 2009, 129: 167-175



[32]Xu J-L(徐建龙), Gao Y-M(高用明), Fu B-Y(傅彬英), Li Z-K(黎志康). Identification and screening of favorable genes from rice germplasm in backcross introgression populations. Mol Plant Breed (分子植物育种), 2005, 3(5): 619-628 (in Chinese with English abstract)



[33]Cao L-Y(曹立勇), Zhu J(朱军), Zhao S-T(赵松涛), He L-B(何立斌), Yan Q-C(颜启传). Mapping QTLs for heat tolerance in a DH population from indica-japonica cross of rice (Oryza sativa L.). J Agric Biotech (农业生物技术学报), 2002, 10(3): 210-214 (in Chinese with English abstract)



[34]Chen Q-Q(陈庆全), Yu S-B(余四斌), Li C-H(李春海), Mou T-M(牟同敏). Identification of QTLs for heat tolerance at flowering stage in rice. Sci Agric Sin (中国农业科学), 2008, 41(2): 315-321 (in Chinese with English abstract)



[35]Kui L-M(奎丽梅), Tan L-B(谭禄宾), Tu J(涂建), Lu Y-X(卢义宣), Sun C-Q(孙传清). Identification of QTLs associated with heat tolerance of Yuanjiang common wild rice (Oryza rufipogon Griff.) at flowering stage. J Agric Biotech (农业生物技术学报), 2008, 16(3): 461-464 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!