作物学报 ›› 2012, Vol. 38 ›› Issue (11): 1960-1968.doi: 10.3724/SP.J.1006.2012.01960
王惠梅1,**,陈洁1,**,施勇烽1,潘刚2,沈海超1,吴建利1,*
WANG Hui-Mei1,**,CHEN Jie1,**,SHI Yong-Feng1,PAN Gang2,SHEN Hai-Chao1,WU Jian-Li1,*
摘要:
为在水稻育种中快速与高效利用稻瘟病抗性基因Pi25, 本文利用该基因不同等位基因编码区序列差异开发了4套CAPS标记(CAP1/Hinc II、CAP3/Bgl II、CAP3/Nde I和CAP3/Hpy 99I), 并利用169份稻种资源、98个重组自交系(RIL)以及217个水稻转基因后代, 对4套标记的准确性和选择效果进行了验证。结果表明, 4套标记均能准确地检测Pi25/pi25座位。其中, 标记CAP1/Hinc II和CAP3/Hpy 99I特异性识别并酶切显性等位基因, 而标记CAP3/Bgl II和CAP3/Nde I特异性识别并酶切隐性等位基因。利用稻瘟病菌株JS001-20接种RIL与转基因材料, 抗性表现与标记检测的结果完全一致, 表明该CAPS标记准确可靠。分析稻种资源后发现, Pi25基因频率较低(1.2%), 说明该基因在我国水稻稻瘟病抗性育种中还没有被充分利用。本文的研究结果特别是开发的2对识别并酶切显性等位基因的CAPS标记可用于分子标记辅助选择, 改良我国早籼稻的稻瘟病抗性。
[1]Jeung J U, Kim B R, Cho Y C, Han S S, Moon H P, Lee Y T, Jena K K. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet, 2007, 115: 1163–1177[2]Terashima T, Fukuoka S, Saka N, Kudo S. Mapping of a blast field resistance gene Pi39(t) of elite rice strain Chubu 111. Plant Breed, 2008, 127: 485–489[3]He X Y, Liu X Q, Wang L, Wang L, Lin F, Cheng Y S, Chen Z M, Liao Y P, Pan Q H. Identification of the novel recessive gene pi55(t) conferring resistance to Magnaporthe oryzae. Sci China Life Sci, 2012, 55: 141–149[4]Lin F, Chen S, Que Z Q, Wang L, Liu X Q, Pan Q H. The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177: 1871–1880[5]Liu J L, Liu X L, Dai L Y, Wang G L. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics, 2007, 34, 765–776[6]Liu X Q, Lin F, Wang L, Pan Q H. The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007, 176: 2541–2549[7]Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site–leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 2008, 180: 2267–2276[8]Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998–1001[9]Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 2009, 57: 413–425[10]Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two CC-NB-LRR genes. Genetics, 2009, 181: 1627–1638[11]Shang J J, Tao Y, Chen X W, Zhou Y, Lei C L, Wang J, Li X B, Zhao X F, Zhang M J, Lu Z K, Xu J C, Cheng Z K, Wan J M, Zhu L H. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 2009, 182: 1303–1311[12]Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. A multi-faceted genomics approach allows the isolation of rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J, 2011, doi:10.1111/j.1365-313X.2011.04502.x[13]Yin D-S(殷得所), Xia M-Y(夏明元), Li J-B(李进波), Wan B-L(万丙良), Zha Z-P(査中萍), Du X-S(杜雪树), Qi H-X(戚华雄). Development of STS marker linked to rice blast resistance gene Pi9 in marker assisted selection breeding. Chin J Rice Sci (中国水稻科学), 2011, 25: 25–30 (in Chinese with English abstract)[14]Jia Y, Wang Z, Singh P. Development of dominant rice blast Pi-ta resistance gene markers. Crop Sci, 2002, 42: 2145–2149[15]Hayashi K, Yasuda N, Fujita Y, Koizumi S. Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theor Appl Genet, 2010, 121: 1357–1367[16]Peng S-Q(彭绍裘), Huang F-Y(黄费元), Sun G-C(孙国昌), Liu E-M(刘二明), Sun Y-J(孙永吉), Ai R-X(艾仁孝), Zhao J-X(赵家秀), Bai S-Z(白世枝), Xiao F-H(肖放华). Studies on durable resistance to blast disease in different latitudes for rice. Sci Agric Sin (中国农业科学), 1996, 29: 52–58 (in Chinese with English abstract)[17]Wu J L, Chai R Y, Fan Y Y, Li D B, Zheng K L, Leung H, Zhuang J Y. Clustering of major genes conferring blast resistance in blast resistance rice cultivar Gumei 2. Rice Sci, 2004, 11: 161–164[18]Wu J L, Fan Y Y, Li D B, Zheng K L, Leung H, Zhuang J Y. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet, 2005, 111: 50–56[19]Chen J, Shi Y F, Liu W Z, Chai R Y, Fu Y P, Zhuang J Y, Wu J L. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics, 2011, 38: 209–216[20]Shi Y F, Chen J, Liu W Q, Huang Q N, Shen B, Leung H, Wu J L. Genetic analysis and gene mapping of a new rolled leaf gene in rice (Oryza sativa L.). Sci China (Ser C-Life Sci), 2009, 52: 885–890[21]Bonman J M, Vergel de Dios T I, Khin M M. Physiological specialization of Pyricularia oryzae in the Philippines. Plant Disease, 1986, 70: 767–769[22]Mackill D J, Bonman J B. Inheritance of blast resistance in near-iosgenic lines of rice. Phytopathlogoy, 1992, 82: 746–749[23]Shen Z-T(申宗坦), Zhang W-G(张旺根), He Z-H(何祖华), Sun S-Y(孙漱源), Tao R-X(陶荣祥), Shi D(施德). Genetic analysis for blast resistance in some indica race varieties (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 1986, 1: 1–7 (in Chinese with English abstract)[24]Hittalmani S, Foolad M R, Mew T, Rodriguez R L, Huang N. Development of a PCR-based marker to identify rice blast resistance gene, Pi-2(t), in a segregating population. Theor Appl Genet, 1995, 91: 9–14[25]Naqvi N I, Bonman J M, Mackill D J, Nelson R J, Chatto B B. Identification of RAPD markers linked to a major blast resistance gene in rice. Mol Breed, 1995, 1: 341–348[26]Zheng K L, Huang N, Bennett J, Khush G S. PCR-based marker-assisted selection in rice breeding. IRRI Discussion Paper Series 1995, No.12, International Rice Research Institute, Manila, The Philippines[27]Shi K(时克), Lei C-L(雷财林), Cheng Z-J(程治军), Xu X-T(许兴涛), Wang J-L(王久林), Wan J-M(万建民). Distribution of two blast resistance genes Pita and Pib in major rice cultivars in China. J Plant Genet Resour (植物遗传资源学报), 2009, 10: 21–26 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|