欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 1960-1968.doi: 10.3724/SP.J.1006.2012.01960

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

稻瘟病抗性基因Pi25特异性CAPS标记的开发与验证

王惠梅1,**,陈洁1,**,施勇烽1,潘刚2,沈海超1,吴建利1,*   

  1. 1中国水稻研究所 / 水稻生物学国家重点实验室, 浙江杭州 310006; 2浙江大学农业与生物技术学院, 浙江杭州 310058
  • 收稿日期:2012-04-17 修回日期:2012-07-05 出版日期:2012-11-12 网络出版日期:2012-09-10
  • 通讯作者: WU Jian-Li; E-mail: beishangd@163.com; Tel: +86-571-63370326 **These authors contributed equally to this work.
  • 基金资助:

    This work was supported by the National High Technology Research and Development Program of China (Grant No. 2011AA10A101 and 2012AA101102) and the Ministry of Finance, China (Grant No. 2012RG002-4).

Development and Validation of CAPS Markers for Marker-Assisted Selection of Rice Blast Resistance Gene Pi25

WANG Hui-Mei1,**,CHEN Jie1,**,SHI Yong-Feng1,PAN Gang2,SHEN Hai-Chao1,WU Jian-Li1,*   

  1. 1 State Key Laboratory of Rice Biology / China National Rice Research Institute, Hangzhou 310006, China; 2 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
  • Received:2012-04-17 Revised:2012-07-05 Published:2012-11-12 Published online:2012-09-10
  • Contact: WU Jian-Li; E-mail: beishangd@163.com; Tel: +86-571-63370326 **These authors contributed equally to this work.
  • Supported by:

    This work was supported by the National High Technology Research and Development Program of China (Grant No. 2011AA10A101 and 2012AA101102) and the Ministry of Finance, China (Grant No. 2012RG002-4).

摘要:

为在水稻育种中快速与高效利用稻瘟病抗性基因Pi25, 本文利用该基因不同等位基因编码区序列差异开发了4套CAPS标记(CAP1/Hinc II、CAP3/Bgl II、CAP3/Nde I和CAP3/Hpy 99I), 并利用169份稻种资源、98个重组自交系(RIL)以及217个水稻转基因后代, 对4套标记的准确性和选择效果进行了验证。结果表明, 4套标记均能准确地检测Pi25/pi25座位。其中, 标记CAP1/Hinc II和CAP3/Hpy 99I特异性识别并酶切显性等位基因, 而标记CAP3/Bgl II和CAP3/Nde I特异性识别并酶切隐性等位基因。利用稻瘟病菌株JS001-20接种RIL与转基因材料, 抗性表现与标记检测的结果完全一致, 表明该CAPS标记准确可靠。分析稻种资源后发现, Pi25基因频率较低(1.2%), 说明该基因在我国水稻稻瘟病抗性育种中还没有被充分利用。本文的研究结果特别是开发的2对识别并酶切显性等位基因的CAPS标记可用于分子标记辅助选择, 改良我国早籼稻的稻瘟病抗性。

关键词: 水稻, 稻瘟病抗性, 酶切扩增多态性序列, 标记辅助选择, 单核苷酸多态性

Abstract:

To promote the application of rice blast resistance gene Pi25 in rice breeding programs, we developed four sets of gene-specific CAPS markers (CAP1/Hinc II, CAP3/Bgl II, CAP3/Nde I, and CAP3/Hpy 99I) based on the coding sequences of the locus. One hundred and sixty-nine rice accessions, 98 recombinant inbred lines (RILs) and 217 transgenic plants were used for the validation of the markers. The results showed that all the four sets of markers were able to accurately and efficiently detect the Pi25/pi25 locus, CAP1/Hinc II and CAP3/Hpy 99I could digest specifically the dominant allele Pi25 while CAP3/Bgl I and CAP3/Nde I were able to digest specifically the recessive allele pi25. RILs and transgenic lines carrying Pi25 allele were resistant to the blast isolate JS001-20 while the lines carrying pi25 allele were susceptible, indicating a perfect detection of the target locus by the CAPS markers. In addition, a low frequency (1.2%) of the dominant allele was detected in the germplasm collections, indicating this gene has not been fully utilized in rice breeding programs in China. Markers CAP1/Hinc II and CAP3/Hpy 99I are recommended and will be useful for the improvement of blast resistance, especially for the early-season indica rice.

Key words: Oryza sativa, Blast resistance, Cleaved amplified polymorphic sequence (CAPS), Marker-assisted selection (MAS), Single nucleotide polymorphism (SNP)

[1]Jeung J U, Kim B R, Cho Y C, Han S S, Moon H P, Lee Y T, Jena K K. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet, 2007, 115: 1163–1177



[2]Terashima T, Fukuoka S, Saka N, Kudo S. Mapping of a blast field resistance gene Pi39(t) of elite rice strain Chubu 111. Plant Breed, 2008, 127: 485–489



[3]He X Y, Liu X Q, Wang L, Wang L, Lin F, Cheng Y S, Chen Z M, Liao Y P, Pan Q H. Identification of the novel recessive gene pi55(t) conferring resistance to Magnaporthe oryzae. Sci China Life Sci, 2012, 55: 141–149



[4]Lin F, Chen S, Que Z Q, Wang L, Liu X Q, Pan Q H. The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177: 1871–1880



[5]Liu J L, Liu X L, Dai L Y, Wang G L. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics, 2007, 34, 765–776



[6]Liu X Q, Lin F, Wang L, Pan Q H. The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007, 176: 2541–2549



[7]Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site–leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 2008, 180: 2267–2276



[8]Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998–1001



[9]Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 2009, 57: 413–425



[10]Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two CC-NB-LRR genes. Genetics, 2009, 181: 1627–1638



[11]Shang J J, Tao Y, Chen X W, Zhou Y, Lei C L, Wang J, Li X B, Zhao X F, Zhang M J, Lu Z K, Xu J C, Cheng Z K, Wan J M, Zhu L H. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 2009, 182: 1303–1311



[12]Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. A multi-faceted genomics approach allows the isolation of rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J, 2011, doi:10.1111/j.1365-313X.2011.04502.x



[13]Yin D-S(殷得所), Xia M-Y(夏明元), Li J-B(李进波), Wan B-L(万丙良), Zha Z-P(査中萍), Du X-S(杜雪树), Qi H-X(戚华雄). Development of STS marker linked to rice blast resistance gene Pi9 in marker assisted selection breeding. Chin J Rice Sci (中国水稻科学), 2011, 25: 25–30 (in Chinese with English abstract)



[14]Jia Y, Wang Z, Singh P. Development of dominant rice blast Pi-ta resistance gene markers. Crop Sci, 2002, 42: 2145–2149



[15]Hayashi K, Yasuda N, Fujita Y, Koizumi S. Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theor Appl Genet, 2010, 121: 1357–1367



[16]Peng S-Q(彭绍裘), Huang F-Y(黄费元), Sun G-C(孙国昌), Liu E-M(刘二明), Sun Y-J(孙永吉), Ai R-X(艾仁孝), Zhao J-X(赵家秀), Bai S-Z(白世枝), Xiao F-H(肖放华). Studies on durable resistance to blast disease in different latitudes for rice. Sci Agric Sin (中国农业科学), 1996, 29: 52–58 (in Chinese with English abstract)



[17]Wu J L, Chai R Y, Fan Y Y, Li D B, Zheng K L, Leung H, Zhuang J Y. Clustering of major genes conferring blast resistance in blast resistance rice cultivar Gumei 2. Rice Sci, 2004, 11: 161–164



[18]Wu J L, Fan Y Y, Li D B, Zheng K L, Leung H, Zhuang J Y. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet, 2005, 111: 50–56



[19]Chen J, Shi Y F, Liu W Z, Chai R Y, Fu Y P, Zhuang J Y, Wu J L. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics, 2011, 38: 209–216



[20]Shi Y F, Chen J, Liu W Q, Huang Q N, Shen B, Leung H, Wu J L. Genetic analysis and gene mapping of a new rolled leaf gene in rice (Oryza sativa L.). Sci China (Ser C-Life Sci), 2009, 52: 885–890



[21]Bonman J M, Vergel de Dios T I, Khin M M. Physiological specialization of Pyricularia oryzae in the Philippines. Plant Disease, 1986, 70: 767–769



[22]Mackill D J, Bonman J B. Inheritance of blast resistance in near-iosgenic lines of rice. Phytopathlogoy, 1992, 82: 746–749



[23]Shen Z-T(申宗坦), Zhang W-G(张旺根), He Z-H(何祖华), Sun S-Y(孙漱源), Tao R-X(陶荣祥), Shi D(施德). Genetic analysis for blast resistance in some indica race varieties (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 1986, 1: 1–7 (in Chinese with English abstract)



[24]Hittalmani S, Foolad M R, Mew T, Rodriguez R L, Huang N. Development of a PCR-based marker to identify rice blast resistance gene, Pi-2(t), in a segregating population. Theor Appl Genet, 1995, 91: 9–14



[25]Naqvi N I, Bonman J M, Mackill D J, Nelson R J, Chatto B B. Identification of RAPD markers linked to a major blast resistance gene in rice. Mol Breed, 1995, 1: 341–348



[26]Zheng K L, Huang N, Bennett J, Khush G S. PCR-based marker-assisted selection in rice breeding. IRRI Discussion Paper Series 1995, No.12, International Rice Research Institute, Manila, The Philippines



[27]Shi K(时克), Lei C-L(雷财林), Cheng Z-J(程治军), Xu X-T(许兴涛), Wang J-L(王久林), Wan J-M(万建民). Distribution of two blast resistance genes Pita and Pib in major rice cultivars in China. J Plant Genet Resour (植物遗传资源学报), 2009, 10: 21–26 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!