欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (04): 753-759.doi: 10.3724/SP.J.1006.2013.00753

• 研究简报 • 上一篇    

强耐冷性水稻新品系J07-23抗氧化系统对长期冷水胁迫的响应

王国骄**,王嘉宇**,苗微,赵明辉,陈温福*   

  1. 沈阳农业大学水稻研究所 / 农业部东北水稻生物学与遗传育种重点实验室 / 教育部与辽宁省共建北方粳稻遗传育种重点实验室,辽宁沈阳110866
  • 收稿日期:2012-09-10 修回日期:2012-12-11 出版日期:2013-04-12 网络出版日期:2013-01-28
  • 通讯作者: 陈温福, E-mail: wfchen5512@yahoo.com.cn
  • 基金资助:

    本研究由辽宁省教育厅重点实验室项目(LS2010147)资助。

Responses of Antioxidant System to Long-Term Cold Water Stress in New Rice Line J07-23 with Strong Cold Tolerance

WANG Guo-Jiao**,WANG Jia-Yu**,MIAO Wei,ZHAO Ming-Hui,CHEN Wen-Fu*   

  1. Rice Research Institute of Shenyang Agricultural University / Key Laboratory of Northeast Rice Biology, Genetics and Breeding, Ministry of Agriculture / Key Laboratory of Northern Japonica Rice Breeding, Ministry of Education, Shenyang 110866, China
  • Received:2012-09-10 Revised:2012-12-11 Published:2013-04-12 Published online:2013-01-28
  • Contact: 陈温福, E-mail: wfchen5512@yahoo.com.cn

摘要:

为了阐明强耐冷性水稻对长期冷水胁迫抗性的生理基础, 以水稻新品系J07-23和冷敏感的栽培稻秀子糯为试验材料, 研究长期冷水胁迫(19℃)下参试材料在开花期剑叶活性氧代谢、抗氧化酶活性、抗氧化剂含量的变化以及成熟后的穗部性状。结果表明, 在长期冷水胁迫下, 秀子糯剑叶的O2产生速率、H2O2含量和MDA含量显著增加, 抗氧化系统中SOD、CAT和GR活性显著升高; J07-23剑叶H2O2含量显著增加, 而O2产生速率和MDA含量无显著变化。J07-23的抗氧化酶(SOD、CAT、POD、APX和GR)活性极显著升高, 抗氧化剂(AsA和GSH)含量及AsA/DHA值和GSH/GSSG值也显著增加。依据耐冷性评价标准, J07-23具有极强耐冷性, 冷水胁迫下高的抗氧化酶活性和抗氧化剂含量是其耐冷性的生理生化基础。

关键词: 水稻, 冷水胁迫, 活性氧, 抗氧化系统

Abstract:

 In order to clarify physiological basis of cold tolerance for rice (Oryza sativa L.) with strong cold tolerance under long-term cold water stress, new rice line J07-23 and chilling-sensitive cultivated rice Xiuzinuo were used to understand effects of long-term cold water stress (19℃) on reactive oxygen species metabolism, antioxidant enzyme activities, changes of antioxidants contents of flag leaves at flowering stage and panicle traits at maturity in this study. The results showed that O2?generating rate, H2O2 content and MDA content of flag leaves increased significantly in Xiuzinuo under long-term cold water stress and its SOD, CAT and GR activities also increased significantly. H2O2 content of flag leaves increased significantly in J07-23, but there were no significant changes in O2? generating rate and MDA content. Antioxidant enzyme (SOD, CAT, POD, APX, and GR) activities increased very significantly, and antioxidants (AsA and GSH) contents, and AsA/DHA ratio and GSH/GSSG ratio also increased significantly in J07-23. J07-23 has extremely strong tolerance to cold stress according to the evaluation standard of cold tolerance. High antioxidant enzyme activities and antioxidants contents are the physiological and biochemical basis of cold tolerance for J07-23 under cold water stress.

Key words: Rice (Oryza sativa L.), Cold water stress, Reactive oxygen species, Antioxidant system

[1]Sun F(孙富), Yang L-T(杨丽涛), Xie X-N(谢晓娜), Liu G-L(刘光玲), Li Y-R(李杨瑞). Effect of chilling stress on physiological metabolism in chloroplasts of seedlings of sugarcane varieties with different chilling resistance. Acta Agron Sin (作物学报), 2012, 38(4): 732–739 (in Chinese with English abstract)

[2]Wang S-H(王石华), Tan X-L(谭学林), Tan Y-L(谭亚玲). Study on cold tolerance at booting stage of rice reciprocal F2 populations generated from the hybrids grown under different altitude. J Yunnan Agric Univ (云南农业大学学报), 2011, 26(6): 755–760 (in Chinese with English abstract)

[3]Dai L-Y(戴陆园), Ye C-R(叶昌荣), Yu T-Q(余腾琼), Xu F-R(徐福荣). Studies on cold tolerance of rice, Oryza sativa L.: I. Description on types of cold injury and classifications of evaluation methods on cold tolerance in rice. Southwest China J Agric Sci (西南农业学报), 2002, 15(1): 41–45 (in Chinese with English abstract)

[4]Han L-Z(韩龙植), Qiao Y-L(乔永利), Koh H-J(高熙宗), Piao Z-Z(朴钟泽), Won Y-J(元容在). Response of some agronomic traits to cold selection at seedling stage in rice. Chin J Rice Sci (中国水稻科学), 2002, 16(4): 315–320 (in Chinese with English abstract)

[5]Foyer C H, Noctor G. Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 2005, 17: 1866–1875

[6]Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909–930

[7]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405–410

[8]Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys, 2005, 444: 139–158

[9]Tuteja N. Mechanisms of high salinity tolerance in plants. Meth Enzymol: Osmosens Osmosignal, 2007, 428: 419–438

[10]Guo Z, Ou W, Lu S, Zhong Q. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem, 2006, 44: 828–836

[11]Liu J J, Lin S H, Xu P L, Wang X J, Bai J G. Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agric Sci China, 2009, 8: 1075–1086

[12]Hodges D M, Andrews C J, Johnson D A, Hamilton R I. Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot, 1997, 48: 1105–1113

[13]Shen W, Nada K, Tachibana S. Effect of cold treatment on enzymic and nonenzymic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber cultivars. J Jpn Soc Hortic Sci, 1999, 68: 967–973

[14]Shu D F, Wang L Y, Duan M, DenY S, Meng Q W. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiol Biochem, 49: 1228–1237

[15]Dai L-Y(戴陆园), Ye R-C(叶昌荣), Kudo S(工藤悟), Tanno H(丹野久). Fifteen years research progress of Sino-Japanese cooperation in rice cold tolerance research. Crop Germplasm Resour (作物品种资源), 1998, (4): 40–48 (in Chinese with English abstract)

[16]Han L-Z(韩龙植). Descriptors and Data Standard for Rice (Oryza sativa L.)(水稻种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2005. pp 108–109 (in Chinese)

[17]Elstner E F, Heupel A. Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Anal Biochem, 1976, 70: 616–620

[18]Patterson B D, MacRae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem, 1984, 139: 487–492

[19]Li H-S(李合生). Principles and Techniques of Plant Physiological Biochemical Experiment (植物生理生化实验技术与方法). Beijing: Higher Education Press, 2000. pp 164–261 (in Chinese)

[20]Zou Q(邹琦). A Guide of Phytophysiological Experiment (植物生理学实验指导). Beijing: China Agriculture Press, 2000. pp 168–171 (in Chinese)

[21]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867–880

[22]Knörzer O C, Durner J, Boger P. Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. Physiol Plant, 1996, 97: 388–396

[23]Li Z-G(李忠光), Du C-K(杜朝昆), Gong M(龚明). Simultaneous measurement of ASA/DHA and GSH/GSSG using a single extraction system. J Yunnan Nor Univ (云南师范大学学报), 2003, 23(3): 67–70 (in Chinese with English abstract)

[24]Blokhina O, Virolainem E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot, 2003, 91: 179–194

[25]Smirnoff N. Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N ed. Antioxidants and Reactive Oxygen Species in Plants. UK: Blackwell Publishing Ltd., 2005. pp 53–86

[26]Athar H R, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot, 2008, 63: 224–231

[27]Larson R A. The antioxidants of higher plants. Phytochemistry, 1988, 27: 969–978

[28]Briviba K, Klotz L O, Sies H. Toxic and signaling effects of photochemically or chemically generated singlet oxygen in biological systems. J Biol Chem, 1997, 378: 1259–1265

[29]Tausz M, Sircelj H, Grill D. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot, 2004, 55: 1955–1962

[30]Yang S-M(杨树明), Zeng Y-W(曾亚文), Du J(杜娟), Pu X-Y(普晓英), Tai L-M(邰丽梅), Yang T(杨涛). Difference of phenotypic diversity of cold tolerance traits at the booting stage for core collection of rice landrace in different ecologies in Yunnan, China. Ecol Environ Sci (生态环境学报), 2009, 18(5): 1887–1892 (in Chinese with English abstract)

[31]Han L-Z(韩龙植), Cao G-L(曹桂兰), Yea J-D(芮钟斗), An Y-P(安永平), Qiao Y-L(乔永利), Hwang H-G(黄兴九), Koh H-J(高熙宗). Relationship between cold tolerance at the bud bursting period and other traits related to cold tolerance in rice. Acta Agron Sin (作物学报), 2004, 30(10): 990–995 (in Chinese with English abstract)

[32]Zhang S-Y(张三元), Li Q(李彻), Shi Y-H(石玉海), Zhang G-J(张俊国), Yang G-L(杨桂兰). The study of cold resistance of rice varieties in Jilin Province. J Jilin Agric Univ (吉林农业科学), 1996, (1):16–19 (in Chinese with English abstract)

[33]Zeng Y-W(曾亚文), Li S-C(李绅崇), Pu X-Y(普晓英), Du J(杜娟), Yang S-M(杨树明), Liu K(刘昆), Gui M(桂敏), Zhang H(张浩). Ecological difference and correlation among cold tolerance traits at the booting stage for core collection of rice landrace in Yunnan, China. Chin J Rice Sci (中国水稻科学), 2006, 20(3): 265–271 (in Chinese with English abstract)

[34]Jin M-L(金铭路), Yang C-G(杨春刚), Yu T-Q(余腾琼), Guo G-Z(郭桂珍), Tang C-F(汤翠凤), Zhang J-G(张俊国), A X-X(阿新祥), Cao G-L(曹桂兰), Xu F-R(徐福荣), Liu X-H(刘宪虎), Dai L-Y(戴陆园), Zhang S-Y(张三元), Han L-Z(韩龙植). Evaluation of cold tolerance at different growing period for mini core collection of rice (Oryza sativa L.) in China. J Plant Genet Resour (植物遗传资源学报), 2009, 10(4): 540–546 (in Chinese with English abstract)

[35]Liu C-W(刘昌文), Guo G-Z(郭桂珍), Yang C-G(杨春刚), Cao G-L(曹桂兰), Zhang J-G(张俊国), Zhang S-Y(张三元), Han L-Z(韩龙植). Difference of cold tolerance for Japonica rice varieties from different places of the world under cold water irrigation. J Plant Genet Resour (植物遗传资源学报), 2008, 9(1): 25–31 (in Chinese with English abstract)

[36]Li X(李霞), Dai C-C(戴传超), Cheng R(程睿), Chen T(陈婷), Jiao D-M(焦德茂). Identification for cold tolerance at different growth stages in rice (Oryza sativa L.) and physiological mechanism of differential cold tolerance. Acta Agron Sin (作物学报), 2006, 32(1): 732–739 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!