欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (06): 1089-1095.doi: 10.3724/SP.J.1006.2013.01089

• 耕作栽培·生理生化 • 上一篇    下一篇

30%矮•烯微乳剂对水稻茎秆理化特性的调控

张倩1,张明才1,张海燕2,谭伟明1,李召虎1,段留生1,*   

  1. 1 植物生长调节剂教育部工程研究中心 / 中国农业大学农学与生物技术学院, 北京100193;2 黑龙江农垦八五零农场, 黑龙江虎林158422
  • 收稿日期:2012-05-16 修回日期:2012-12-06 出版日期:2013-06-12 网络出版日期:2013-03-22
  • 基金资助:

    本研究由国家“十一五”科技支撑计划项目(2006BAD02A00)和国家高技术研究发展计划(863计划)项目(2006AA10A213)资助。

Effects of Clomequat-Uniconazole 30% Micro-Emulsion on Stem Physical and Chemical Characteristics of Rice

ZHANG Qian1,ZHANG Ming-Cai1,ZHANG Hai-Yan2,TAN Wei-Ming1,LI Zhao-Hu1,DUAN Liu-Sheng1,*   

  1. 1 Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; 2 Heilongjiang 850 Farm, Hulin 158422, China
  • Received:2012-05-16 Revised:2012-12-06 Published:2013-06-12 Published online:2013-03-22

摘要:

寒倒伏是限制地水稻高产潜力充分发挥的因素之一。试验以垦稻12为材料,于水稻拔节初期叶面喷施30%·烯微乳剂,研究其对水稻茎秆形态建成、物质积累及产量构成因素的调控作用。结果表明,30%·烯微乳剂1.2 L hm-2处理,能够显著缩短茎秆基部第1、第2节间的长度,增加基部节间粗度;显著缩小茎秆细胞宽度,增强细胞排列紧实度;改善茎秆的抗折性,茎秆弯曲折断强度和径向压缩强度比对照分别提高152.4%82.5%;显著提高水稻齐穗期茎秆基部节间的碳氮比和灌浆后期茎秆中纤维素、半纤维素和木质素含量,显著降低处于固定伸长期的第2节间GA3含量;改善水稻产量构成因素,提高了产量。综上所述,30%·烯微乳剂有利于提高水稻茎秆的抗倒伏能力,增加水稻产量。

关键词: 30%矮•烯微乳剂, 水稻, 茎秆, 理化特性, 细胞解剖结构;产量

Abstract:

Lodging is one of the most restrictive factors of cold ground rice to achieve higher yield. Using a cultivars Kendao 12 at the early jointing sprayed with a new plant growth regulator 30% chlormequat-uniconazole ME, we studied the effect of it on morphological and physiological characteristics, yield and yield components. The results indicated that 1.2 L ha-1 treatment of 30% chlormequat-uniconazole ME on rice leaves could markedly shorten the length of basal internodes and increase the diameter of them. In addition, cell microscopy showed that tight degree of cell in 1.2 L ha-1 treatment was enhanced, and the cells got shorten. Through the improvement of stem morphological characteristics, the bend breaking strength and radial compressive strength were respectively increased by 152.4% and 82.5% as compared with CK. The plant growth regulation could significantly increase the C/N value in the basal internode of stem at full-heading stage; increase contents of hemicellulose, cellulose and lignin of stem at later grain filling stage; significantly reduce GA3 content in the 2nd internodes; and improve rice yield and its components. Generally speaking, 30% chlormequat-uniconazole ME can enhance the quality of stem to improve lodging-resistance of rice.

Key words: 30% chlormequat-uniconazole ME, Rice, Stem, Physical and chemical characteristics, Cell anatomic structure, yield

[1]Dou Y-X(窦永秀). Evaluation of Lodging Resistance and Effects of Lodging on Yield & Rice Quality during Grain Filling Stage. MS Thesis of Yangzhou University, 2008 (in Chinese with English abstract)



[2]Tian B-M(田保明), Yang G-S(杨光圣). The performance of lodging and developing a standard test for lodging resistance in crops. Chin Agric Sci Bull (中国农学通报), 2005, 21(7): 111–114 (in Chinese with English abstract)



[3]Kashiwagi T. Lodging resistance locus prl5 improves physical strength of the lower plant part under different conditions of fertilization in rice (Oryza sativa L.). Field Crops Res, 2010, 115: 107–115



[4]Yoshida S. Physiological aspect of grain yield. Annu Rev Plant Physiol, 1972, 23: 437–464



[5]Deng W(邓文), Qing X-G(青先国), Ma G-H(马国辉). Progress of research on lodging resistance in rice. Hybrid Rice (杂交水稻), 2006, 21(6): 6–10 (in Chinese with English abstract)



[6]Ookawa T, Ishihara K. Varietal difference of the cell wall components affecting the bending stress of the culm in relating to the lodging resistance in paddy rice. Jpn J Crop Sci, 1993, 62: 378–384



[7]Zhou L-H(周丽华). Effects of stem physiological properties on lodging resistance in hybrid rice. Henan Agric Sci (河南农业科学), 2006, (10): 20–23 (in Chinese with English abstract)



[8]Kashiwagi T. Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.). Theor Appl Genet, 2008, 117: 749–757



[9]Oladokun M A O, Ennos A R. Structural development and stability of rice Oryza sativa L. var. Nerica 1. J Exp Bot, 2006, 57: 3123–3130



[10]Dong X-H(董学会), Duan L-S(段留生), Meng F-L(孟繁林). Effects of spraying 30% DTA-6. ethephon solution on yield and straw quality of maize. J Maize Sci (玉米科学), 2006, 14(1): 138–140 (in Chinese with English abstract)



[11]Duan L-S (段留生), Li Z-H (李召虎), He Z-P(何钟佩). Effects of 20% paclobutrazol•mepiquat chloride micro-emulsion on lodging resistance and yield of winter wheat and its physiological mechanism. Chin J Pestic Sci (农药学学报), 2002, 4(4): 33–39 (in Chinese with English abstract)



[12]Basra A S ed. Plant Growth Regulators in Agriculture and Horticulture: Their Role and Commercial Uses. New York: Food Products Press, 2000. pp xiii–xiv



[13]Passam H C, Koutri A C, Karapanos I C. The effect of chlormequat chloride (CCC) application at the bolting stage on the flowering and seed production of lettuce plants previously treated with water or gibberellic acid (GA3). Sci Hortic, 2008, 116: 117–121



[14]Zhang M C, Duan L S. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J Plant Physiol, 2007, 164: 709–717



[15]Yasushi T, Kyotaro K, Minaho S. Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8’-hydroxylase CYP707A with no growth-retardant effect. Bioorg Med Chem, 2009, 17: 6620–6630



[16]Zhang Q(张倩), Zhang H-Y(张海燕), Tan W-M(谭伟明), Duan L-S(段留生). Effects of clomequat-uniconazole 300 micro-emulsion on lodging resistance and grain yield of rice. Chin J Pestic Sci (农药学学报), 2011, 13(2): 144–148 (in Chinese with English abstract)



[17]Li X-M(李晓梅). Manufaction of paraffin section on apical meristem of soybean. Soybean Sci (大豆科学), 2008, 27(4): 708–710 (in Chinese with English abstract)



[18]Zou Q(邹琦). Plant Physiology Experiment Guide (植物生理学实验指导). Beijing: Agriculture Press, 2000. pp 111–114 (in Chinese)



[19]Li Y-K(李酉开). Routine Analysis Methods of Soil Agrochemistry (土壤农业化学常规分析方法). Beijing: Science Press, 1983. pp 79, 272 (in Chinese)



[20]Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci, 1991, 74: 3583–3597



[21]He Z-P(何钟佩). Chemical Control of Crops Experimental Guide (农作物化学控制实验指导). Beijing: Beijing Agricultural University Press, 1993. pp 60–68 (in Chinese)



[22]Kashiwagi T, Ishimaru K. Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiol, 2004, 134: 676-683



[23]Ranwala A P, Miller W B. Gibberellin-mediated changes in carbohydrate metabolism during flower stalk elongation in tulips. Plant Growth Regul, 2008, 55: 241–248



[24]Dijkstra C, Adams E, Bhattacharya A. Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Rep, 2008, 27: 463–470



[25]Duan L-S(段留生), Tian X-L(田晓莉). Crop Chemical Control Principle and Technology (作物化学控制原理与技术), 2nd edn. Beijing: China Agricultural University Press, 2011. pp 39–40 (in Chinese)



[26]Li Y-Y(李玥莹), Chen F-Y(陈凤玉). Effect of uniconzole on histological structures of rice seedling. Chin J Rice Sci (中国水稻科学), 2001, 15(4): 330–332 (in Chinese with English abstract)



[27]Hua Z-T(华泽田), Hao X-B(郝宪彬), Shen F(沈枫). Lodging traits of japonica super hybird rice. J Shenyang Agric Univ (沈阳农业大学学报), 2003, 34(3): 161–164 (in Chinese with English abstract)



[28]Dong M-H(董明辉), Zhang H-C(张洪程), Dai Q-G(戴其根). Analysis of lodging indices and correlative agronomic characters of different japonica rice varieties. J Jilin Agric Univ (吉林农业大学学报), 2003, 25(2): 120–123 (in Chinese with English abstract)



[29]Yuan D(苑丁). Influence of Silicon and Nitrogen Interactive Effects on Rice Culm Mechanical Strength. MS Thesis of China Agricultural University, 2009 (in Chinese with English abstract)



[30]Guo Y-H(郭玉华), Zhu S-G(朱四光), Zhang L-B(张龙步). Influence of different cultivation conditions on biochemistry components of rice culms. J Shenyang Agric Univ (沈阳农业大学学报), 2003, 34(2): 9–91 (in Chinese with English abstract)



[31]Xu S-X(徐是雄), Xu X-B(徐雪宾). Rice Morphology and Anatomy (稻的形态与解剖). Beijing: Agriculture Press, 1984. pp 28–31 (in Chinese)



[32]Dakora F D, Nelwamondo A. Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cowpea. Funct Plant Biol, 2003, 30: 947–953



[33]Yan Y-H(闫艳红), Li B(李波), Yang W-Y(杨文钰). Effects of uniconazole soaking on drought tolerance of soybean seedling. Chin J Oil crop Sci (中国油料作物学报), 2009, 31(4): 480–485 (in Chinese with English abstract)



[34]Yang W-Y(杨文钰), Han H-F(韩惠芳), Ren W-J(任万君), Zhao L(赵莉), Fan G-Q(樊高琼). Effects of uniconazole waterless-dressing seed on endogenous hormones and C/N ratio at tillering stage of wheat. Acta Agron Sin (作物学报), 2005, 31(6): 760–765 (in Chinese with English abstract)



[35]Zhang X-L(张秀丽). Study on the Effect of Gibberellic Acid and Cycocel on Mung Bean Growing Characters and Index of Physiological and Yield. MA Thesis of Jilin Agricultural University, 2007 (in Chinese with English abstract)



[36]Feng D(冯斗). Effects of three retardants on growth and physiological properties of sweet sorghum seedlings. Chin J Trop Crop (热带作物学报), 2009, 30(10): 1468–1472 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!