欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1909-1915.doi: 10.3724/SP.J.1006.2013.01909

• 研究简报 • 上一篇    

砷胁迫下水磷耦合对不同磷效率水稻农艺性状及精米砷含量的影响

张秀,郭再华*,杜爽爽,王阳,石乐毅,张丽梅,贺立源   

  1. 华中农业大学资源与环境学院,湖北武汉430070
  • 收稿日期:2013-01-31 修回日期:2013-06-04 出版日期:2013-10-12 网络出版日期:2013-07-02
  • 通讯作者: 郭再华, E-mail: gzh2005@mail.hzau.edu.cn, Tel: 15827131815
  • 基金资助:

    本研究由国家自然科学基金项目(40701076)和中央高校基本科研业务费专项资金(2011PY110)资助。

Effect of Water Management and Phosphorus on Agricultural Characters and As Concentration in Polished Rice of Two Rice Cultivars Differing in P-Efficiency under As-stress Conditions

ZHANG Xiu,GUO Zai-Hua*,DU Shuang-Shuang,WANG Yang,SHI Le-Yi,ZHANG Li-Mei,HE Li-Yuan   

  1. College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China?
  • Received:2013-01-31 Revised:2013-06-04 Published:2013-10-12 Published online:2013-07-02
  • Contact: 郭再华, E-mail: gzh2005@mail.hzau.edu.cn, Tel: 15827131815

摘要:

为探索缓解水稻砷毒害的农艺措施,选用耐低磷水稻99011和低磷敏感水稻99012,研究水分管理、磷用量及其交互作用对不同砷浓度酸性土壤上水稻生长发育、产量及稻米砷含量的影响。结果表明,节水灌溉(干湿交替)和增施磷肥都明显促进水稻生长(包括分蘖数、总穗数、有效穗、根系干重、生物量)和产量形成,缓解砷胁迫对水稻生长和产量的不利影响,且水、磷交互作用也表现出明显的正效应。50 mg kg-1砷处理时,节水灌溉显著降低精米砷含量,而增施磷肥提高了精米砷含量,水、磷交互效应明显比水分管理效应差,但比磷肥效应好得多;100 mg kg-1砷处理时,节水灌溉和增施磷肥都明显降低精米中的砷含量,且二者交互表现出正效应。土壤加砷后,相同处理的生物学性状均为耐低磷水稻明显大于磷敏感水稻,而精米砷含量则为耐低磷水稻显著低于磷敏感水稻。研究表明,可以根据砷污染程度采取干湿交替水分管理、调节磷用量以及选择吸收磷能力强的耐低磷水稻品种等措施缓解砷污染对水稻生长、产量和品质的不利影响。

关键词: 砷水平, 生物学性状, 食品安全性, 磷效率, 磷用量, 水稻, 水分管理

Abstract:

To explore the agronomic measures for mitigating As toxicity to rice, we conducted soil culture experiments to investigate the effect of three potential practical methods, water management regime, phosphorus (P) fertilization and their interaction on plant growth, grain yield and As concentration in polished rice in P-efficient rice cultivar 99011 and P-inefficient rice cultivar 99012 in various As-stress acid soils. Results indicated that compared with flooded conditions and / or insufficient P application, water-saving irrigation (maintaining the soil moisture from 65% of the maximum field water capacity to flooded conditions) and / or sufficient P application significantly increased the number of tillers, total spike, productive spike, root dry weight, biomass and grain yield of two rice cultivars regardless of As levels. Both rice cultivars had the best agricultural characteristics under water-saving irrigationcondition with sufficient P fertilization. So water management, P fertilization and their interaction all showed positive effect. At 50 mg kg-1 of As level, water-saving flooded treatment, but sufficient P application increased the As concentration in polished rice significantly compared with insufficient P supply. Thus the effect of interaction of water management and P fertilization was worse than the independent effect of water management, but better than the independent effect of P fertilization. At 100 mg kg-1 of As level, water-saving flooded conditions and/or insufficient P application, and their interaction effect was better than the independent effect of two factors. At the same treatment with As supply, all the investigated agricultural characteristics of low-P tolerant rice cultivar 99011 were better than those of low-P sensitive rice cultivar 99012, but the As concentration in polished rice was on the contrary. The study demonstrated that water management regime, P fertilization, and selection of P-efficient rice cultivars are effective measures that can be used to relieve the As stress to rice growth and the As accumulation in polished rice.management and/or sufficient P supply reduced the As concentration in polished rice clearly compared with management decreased the As concentration in polished rice markedly compared with

Key words: As level, Biological characters, Food safety, P-efficiency, P addition, Rice, Water management

[1]Su Y H, Steve P M, Zhao F J. Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil, 2010, 328: 27–34



[2]Zhu Y G, Williams P N, Meharg A A. Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut, 2008, 154: 169–171



[3]Xiao X-Y(肖细元), Chen T-B(陈同斌), Liao X-Y(廖晓勇), Wu B(武斌), Yan X-L(阎秀兰), Zhai L-M(翟丽梅), Xie H(谢华), Wang L-X(王莉霞). Regional distribution of arsenic contained minerals and arsenic pollution in China. Geogr Res (地理研究), 2008, 27(1): 201–212 (in Chinese with English abstract)



[4]Khan M A, Islam M R, Panaullah G M, Duxbury J M, Jahiruddin M, Loeppert R H. Accumulation of arsenic in soil and rice under wetland condition in Bangladesh. Plant Soil, 2010, 333: 263–274



[5]Smith E, Naidu R, Alston A M. Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption. J Environ Qual, 2002, 31: 557–563



[6]Zou Q(邹强), Liu F(刘芳), Yang J-H(杨剑虹). Adsorption-desorption and competitive adsorption of arsenic and phosphorus in purple soil. Chin J Appl Ecol (应用生态学报), 2009, 20(6): 1383–1389 (in Chinese with English abstract)



[7]Xu H X, Weng X Y, Yang Y. Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Russian J Plant Physiol, 2007, 54: 741–748



[8]Lu Y, Dong F, Deacon C, Chen H J, Raab A, Meharg A A. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environ Pollut, 2010, 158: 1536–1541



[9]Talukder A S M H M, Meisner C A, Sarkar M A R, Islam M S, Sayre K D, Duxbury J M, Lauren J G. Effect of water management, arsenic and phosphorus levels on rice in a high-arsenic soil-water system: II. Arsenic uptake. Ecotox Environ Safe, 2012, 80: 145–151



[10]Guo Z-H(郭再华). Screening and Classification of Rice with Different Phosphorus Efficiency and Physiology Mechanism. Ph.D dissertation of Huazhong Agricultural University, 2005 (in Chinese with English abstract)



[11]Lei M(雷梅), Chen T-B(陈同斌), Fan Z-L(范稚莲), Mo L-Y(莫良玉), Huang Z-C(黄泽春). Effect of phosphorus on arsenic adsorption by three different soils. Chin J Appl Ecol (应用生态学报), 2003, 14(11): 1989–1992 (in Chinese with English abstract)



[12]Geng Z-X(耿志席), Liu X-H(刘小虎), Li L-F(李莲芳), Zeng X-B(曾希柏). Effects of phosphorus fertilization on the bioavailability of arsenic in soils. J Agro-Environ Sci (农业环境科学学报), 2009, 28(11): 2338–2342 (in Chinese with English abstract)



[13]Zhang G-L(张广莉), Song G-Y(宋光煜), Zhao H-X(赵红霞). Effect of phosphorus on distribution of inorganic arsenic fractions in rhizosphere and growth of rice. Acta Pedol Sin (土壤学报), 2002, 39(1): 23–28 (in Chinese with English abstract)



[14]Liao X-Y(廖晓勇), Chen T-B(陈同斌), Yan X-L(阎秀兰), Xie H(谢华), Xiao X-Y(肖细元), Zhai L-M(翟丽梅). Effects of different forms of P fertilizers on phytoremediation for As-contaminated soils using As-hyperaccumulator Pteris vittata L. Environ Sci (环境科学), 2008, 29(10): 2906–2911 (in Chinese with English abstract)



[15]Tu S X, Ma L Q. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot, 2003, 50: 243–251



[16]Abedin M J, Feldmann J, Meharg A A. Uptake kinetics of arsenic species in rice plants. Plant Physiol, 2002, 128: 1120–1128



[17]Zhao F J, Ma J F, Meharg A A, McGrath S P. Arsenic uptake and metabolism in plants. New Phytologist, 2009, 181: 777–794



[18]Lou-Hing D, Zhang B, Price A H, Meharg A A. Effects of phosphate on arsenate and arsenite sensitivity in two rice (Oryza sativa L.) cultivars of different sensitivity. Environ Exp Bot, 2011, 72: 47–52



[19]Meharg A A, Jardine L. Arsenite transport into paddy rice (Oryza sativa L.) roots. New Phytologist, 2003, 157: 39–44



[20]Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere, 2011, 83: 925–932



[21]Zeng X-B(曾希柏), He Q-H(和秋红), Li L-F(李莲芳), Bai L-Y(白玲玉). Influence of flooding on form transformation of soil arsenic. Chin J Appl Ecol (应用生态学报), 2010, 21(11): 2997–3000 (in Chinese with English abstract)



[22]Li R Y, Stroud J L, Ma J F, McGrath S P, Zhao F J. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol, 2009, 43: 3778–3783



[23]Xu X Y, McGrath S P, Meharg A A, Zhao F J. Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol, 2008, 42: 5574–5579



[24]Sarkar S, Basu B, Kundu C K, Patra P K. Deficit irrigation: An option to mitigate arsenic load of rice grain in West Bengal, India. Agric Ecosyst Environ, 2012, 146: 147–152

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!