欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (03): 457-465.doi: 10.3724/SP.J.1006.2014.00457

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用染色体片段代换系定位陆地棉株高QTL

何蕊1,2,石玉真2,张金凤2,梁燕2,张保才2,李俊文2,王涛2,龚举武2,刘爱英2,商海红2,巩万奎2,白志川1,*,袁有禄2,*   

  1. 1西南大学园艺园林学院, 重庆 400716; 2中国农业科学院棉花研究所 / 棉花生物学国家重点实验室, 河南安阳 455000
  • 收稿日期:2013-07-25 修回日期:2013-11-30 出版日期:2014-03-12 网络出版日期:2014-01-16
  • 通讯作者: 白志川, E-mail: baizhichuan@yahoo.com.cn, Tel: 13983634203; 袁有禄, E-mail: yuanyl@cricaas.com.cn, Tel: 0372-2525371
  • 基金资助:

    本研究由国家自然科学基金项目(31101188), 国家重点基础研究发展计划(973计划)项目(2010CB126006), 国家高技术研究发展计划(863计划)项目(2012AA101108)和中央级公益性科研院所基本科研业务专项(SJA1203)资助。

QTL Mapping for Plant Height Using Chromosome Segment Substitution Lines in Upland Cotton

HE Rui,SHI Yu-Zhen,ZHANG Jin-Feng,LIANG Yan,ZHANG Bao-Cai,LI Jun-Wen,WANG Tao,GONG Ju-Wu,LIU Ai-Ying,SHANG Hai-Hong,GONG Wan-Kui,BAI Zhi-Chuan1,*,YUAN You-Lu2,*   

  1. 1 Horticulture and Landscape College, Southwest University, Chongqing 400716, China; 2 State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
  • Received:2013-07-25 Revised:2013-11-30 Published:2014-03-12 Published online:2014-01-16
  • Contact: 白志川, E-mail: baizhichuan@yahoo.com.cn, Tel: 13983634203; 袁有禄, E-mail: yuanyl@cricaas.com.cn, Tel: 0372-2525371

摘要:

以陆地棉中棉所36为轮回亲本和海岛棉海1为供体亲本, 构建染色体片段代换系。为了能检测到稳定的株高QTL,将三个代换系群体(BC5F3, BC5F3:4和BC5F3:5)在5个环境中种植,2009年和2010年分别在河南安阳种植BC5F3单株、BC5F3:4株行, 2011年分别在河南安阳、辽宁辽阳和新疆石河子种植BC5F3:4株系。结果表明,在不同群体环境中株高的超亲比例为53.43%~88.97%。从早期构建的总图距为5088.28 cM, 含有2280个SSR标记位点,覆盖26条染色体的遗传连锁图谱中筛选标记,对408个单株进行的SSR鉴定,结果检测到16个株高QTL,分布在10条染色体上。单个QTL解释的表型变异为7.35%~13.17%。有7个QTL在2个以上环境被检测到。与标记MUSS563紧密连锁的qPH-15-19在一个环境中被检测到,在前人的研究中也有报道。这些结果为进一步精细定位QTL、基因克隆、分子辅助选择等研究奠定基础。

关键词: 棉花, 染色体片段代换系, 株高, QTL

Abstract:

Chromosome segment substitution lines (BC5F3, BC5F3:4, and BC5F3:5) were developed with G. hirsutum CCRI36 as the recipient parent and G. barbadense Hai1 as the donor parent. In this study, plant height of BC5F3 individuals (2009 in Anyang Henan), and BC5F3:4 lines (2010 in Anyang Henan) and BC5F3:5 lines (2011 in Anyang Henan, Shihezi Xinjiang and Liaoyang Liaoning, respectively) were evaluated. SSR markers were wed to screen 408 BC5F3 individuals. QTLs for plant height were identified by QTL IciMapping V3.2 software. The  results indicated that the transgressive rate of plant height was from 53.43% to 88.97% and totally 16 QTLs for plant height were detected in three generations and five environments, which were mapped on 10 chromosomes, and explained the phenotypic variance from 7.35% to 13.17%. Seven QTLs were detected in at least two environments. qPH-15-19 was also reported in other researches. These stablly expressed QTLs could be applied in the marker assisted selection, fine QTL mapping and gene cloning.

[1]李新裕, 陈玉娟, 闰志顺, 王瑞清. 棉花丰产株型、株高、茎粗与单株成铃的关系. 塔里木农垦大学学报, 1998, 10(1): 34–36



Li X Y, Chen Y J, Yan Z S, Wang R Q. The relation between plant type, height, stem diameter, of high-yielding cotton, and boll number per plant. J Talimu Univ Agric Reclamat, 1998, 10(1): 34–36 (in Chinese with English abstract)



[2]葛瑞华, 兰孟焦, 石玉真, 李俊文, 刘爱英, 王涛, 袁有禄. 陆海BC4F3和BC4F4代主要农艺性状的相关和通径分析. 中国农学通报, 2012, 28(3): 127–130



Ge R H, Lan M J, Shi Y Z, Lin J W, Liu A Y, Wang T, Yuan Y L. Correlation and path coefficient analysis of main agronomic characters in BC4F3 and BC4F4 generations from Gossypium hirsutum L. × Gossypium barbadense L. Chin Agric Sci Bull, 2012, 28(3): 127–130 (in Chinese with English abstract)



[3]王新坤, 潘兆娥, 孙君灵, 何守朴, 唐灿明, 杜雄明. 陆地棉矮秆突变体株高和纤维品质的QTL定位及相关性研究. 核农学报, 2011, 25: 448–455



Wang X K, Pan Z E, Sun J L, He S P, Tang C M, Du X M. Correlation analysis and QTL mapping for plant height and fiber quality of dwarf mutant In upland cotton (Gossypium hirsutum L.). Acta Agric Nucl Sin, 2011, 25: 448–455 (in Chinese with English abstract)



[4]汤飞宇, 程锦, 黄文新, 肖小红, 肖文俊. 高品质陆地棉数量性状的典型相关研究. 安徽农业科学, 2008, 36: 6725–6726



Tang F Y, Cheng J, Huang W X, Xiao X H, Xiao W J. Study on canonical correlation of quantitative traits in upland cotton with high quality. J Anhui Agric Sci, 2008, 36: 6725–6726 (in Chinese with English abstract)



[5]Shapply Z W, Jenkins J N, Zhu J, Mccarty J C Jr. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cotton Sci, 1998, 2: 153–163



[6]Song X L, Zhang T Z. Quantitative trait loci controlling plant architectural traits in cotton. Plant Sci, 2009, 177: 317–323



[7]于霁雯. 短季棉遗传多样性分析及其重要农艺和经济性状的QTL定位. 华中农业大学博士论文, 2006



Yu J W. Genetic Diversity Evaluation of Shorted-Season Upland Cotton Cultivars and Localization of QTLs for Important Agriculture Economic Traits. PhD Dissertation of Huazhong Agricultural University, 2006 (in Chinese with English abstract)



[8]兰孟焦, 杨泽茂, 石玉真, 葛瑞华, 李爱国, 张保才, 李俊文, 商海红, 刘爱英, 王涛, 袁有禄. 陆海BC4F2和BC4F3代换系的评价及纤维产量与品质相关的QTL的检测. 中国农业科学, 2011, 44: 3086–3097



Lan M J, Yang Z M, Shi Y Z, Ge R H, Li A G, Zhang B C, Li J W, Shang H H, Liu A Y, Wang T, Yuan Y L. Assessment of substitution lines and Identification of QTL relater to fiber yield and quality traits in BC4F2 and BC4F3 populations from Gossypium hisutum × Gossypium barbadense. Sci Agric Sin, 2011, 44: 3086–3097 (in Chinese with English abstract)



[9]梁燕. 早熟陆地棉染色体片段代换系的构建及QTL初步定位. 中国农业科学院硕士论文, 2010



Liang Y. Construction of Chromosome Segment Substitution Lines and Primary QTL Mapping in Early-Maturing Upland Cotton. MS Thesis of Chinese Academy of Agricultural Sciences, 2010 (in Chinese with English abstract)



[10]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127



[11]张金凤. 陆地棉染色体片段代换系(BC5F3、BC5F3:4、BC5F3:5)产量和纤维品质的评价及QTL定位. 中国农业科学院硕士论文, 2010



Zhang J F. The Evaluation and Identifying QTL of Fiber Yield and Quality Traits of Chromosome Segment Substitution Lines (BC5F3, BC5F3:4, BC5F3:5) in Upland Cotton. MS Thesis of Chinese Academy of Agricultural Sciences, 2009 (in Chinese with English abstract)



[12]张军, 武耀庭, 郭旺珍, 张天真. 棉花微卫星标记的PAGE/银染快速检测. 棉花学报, 2000, 12: 267–269



Zhang J, Wu Y T, Guo W Z, Zhang T Z. Fast screening microsatellite markers in cotton with PAGE/silver staining. Acta Gossypii Sin, 2000, 12: 267–269 (in Chinese English abstract)



[13]Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhan H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88: 93–104



[14]Li H H, Ribaut J M, Li Z L, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243–260



[15]秦鸿德. 陆地棉产量与纤维品质性状QTL定位和标记辅助轮回选择. 南京农业大学博士论文, 2007



Qin H D. QTL Mapping of Yield and Fiber Quality Traits in Gossypium hirsutum L. and Recurrent Selection with MAS. PhD Dissertation of Nanjing Agricultural University, 2007 (in Chinese with English abstract)



[16]Guo X, Guo Y P, Ma J, Wang F, Sun M Z, Gui L J, Zhou J J, Song X L, Sun X Z, Zhang T Z. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Interqr Plant Biol, 2013



[17]王沛政, 秦丽, 苏丽, 胡保民, 张天真. 新疆主栽陆地棉品种形态性状QTL的标记与定位. 植物分子育种, 2007, 5: 811–818



Wang P Z, Qin L, Su L, Hu B M, Zhang T Z. QTL mapping of some plant morphological traits for main upland cotton cultivars planted in Xinjiang. Mol Plant Breed, 2007, 5: 811–818 (in Chinese with English abstract)



[18]张培通, 朱协飞, 郭旺珍, 俞敬忠, 张天真. 泗棉3号理想株型的遗传及分子标记研究. 棉花学报, 2006, 18: 13–18



Zhang P T, Zhu X F, Guo W Z, Yu J Z, Zhang T Z. Inheritance and QTLs tagging for ideal plant architecture of Simian 3 using molecular markers. Cotton Sci, 2006, 18: 13–18 (in Chinese with English abstract)



[19]姚金波, 张永山, 陈伟, 栾明宝, 冯志迪, 郭香墨. 利用置换系检测棉花第22染色体短臂的产量相关性状QTLs. 棉花学报, 2010, 22: 521–526



Yao J B, Zhang Y S, Chen W, Luan M B, Feng Z D, Guo X M. Tagging QTLs of yield-related traits in chromosome 22th of allotetraploid cotton using substitution line. Cotton Sci, 2010, 22: 521–526 (in Chinese with English abstract)



[20]Wang B H, Wu Y T, Huang N T, Zhu X F, Guo W Z, Zhang T Z. QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers. Acta Genet Sin, 2006, 33: 161–170



[21]马雪霞. 二倍体亚洲棉遗传图谱的构建及产量/品质QTL分析. 南京农业大学博士论文, 2007



Ma X X. Construction of Molecular Linkage Map and Mapping of Cultivated Diploid Cotton (Gossypium arboreum L.). PhD Dissertation of Nanjing Agricultural University, 2007 (in Chinese with English abstract)



[22]涂建莉. 湖北省陆地棉品种遗传结构剖析和陆海BC1F8农艺性状QTL定位. 华中农业大学硕士论文, 2012



Tu J L. Genetic structure analysis of upland cotton in Hubei province and QTL mapping for agronomic traits of interspecific BC1F8 population. MS Thesis of Huazhong Agricultural University, 2012 (in Chinese with English abstract)



[23]兰孟焦. 以中棉所45为背景的海岛棉染色体代换片段的鉴定及纤维产量与品质QTL定位. 中国农业科学院硕士论文, 2009



Lan M J. Characterization of Donor Chromosome Fragments from Gossypium barbadense L. in CCRI45 Background of Gossypium hisutum L. and Identification of QTL Related to Fiber Yield and Quality Traits. MS Thesis of Chinese Academy of Agricultural Sciences, 2009 (in Chinese with English abstract)



[24]杨泽茂. 陆地棉染色体片段代换系的构建及QTL定位初探. 湖南农业大学硕士论文, 2009



Yang Z M. Developing Chromosome Segment Substitution Lines and Primary Identification of QTL in Upland Cotton (G. hirsutum). MS Thesis of Hunan Agricultural University, 2009 (in Chinese with English abstract)



[25]Ulloa M, Cantrell R G, Percy R G. QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. Cotton Sci, 2000, 4: 10–18



[26]殷剑美, 武耀廷, 张天真, 郭旺珍, 朱协飞. 陆地棉产量性状QTLs的分子标记及定位. 生物工程学报, 2002, 18: 162–166



Yin J M, Wu Y T , Zhang T Z, Guo W Z, Zhu X F. Tagging and mapping of QTLs controlling yield and yield components in upland cotton ( Gossypium hirsutum L.) using SSR and RAPD markers. Chin J Biotech, 2002, 18: 162–166 (in Chinese with English abstract)



[27]王沛政, 秦利, 苏丽, 胡保明, 张天真. 新疆陆地棉主栽品种部分产量性状QTL的标记与定位. 中国农业科学, 2008, 41: 2947–2956



Wang P Z, Qin L, Su L, Hu B M, Zhang T Z. QTL mapping of the partial yield components of main upland cotton cultivars planted in Xinjiang. Sci Agric Sin, 2008, 41: 2947–2956 (in Chinese with English abstract)

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[6] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[7] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[8] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[11] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[12] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[13] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[14] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[15] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!