欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (05): 850-858.doi: 10.3724/SP.J.1006.2014.00850

• 耕作栽培·生理生化 • 上一篇    下一篇

超级稻根系形态生理特征及其与产量形成的关系

褚光,刘洁,张耗,杨建昌*   

  1. 扬州大学江苏省作物遗传生理重点实验室,江苏扬州 225009
  • 收稿日期:2013-11-26 修回日期:2014-03-04 出版日期:2014-05-12 网络出版日期:2014-03-24
  • 通讯作者: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317
  • 作者简介:杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317
  • 基金资助:

    本研究由国家自然科学基金项目(31271641, 31071360),国家公益性行业(农业)科研专项(201103003, 201203079),国家“十二五”科技支撑计划项目(2011BAD16B14, 2012BAD04B08, 2013BAD07B09),江苏高校优势学科建设工程专项和江苏省普通高校研究生科研创新计划项目(CXZZ13_0902)资助。

Morphology and Physiology of Roots and Their Relationships with Yield Formation in Super Rice

CHU Guang,LIU Jie,ZHANG Hao,YANG Jian-Chang*   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
  • Received:2013-11-26 Revised:2014-03-04 Published:2014-05-12 Published online:2014-03-24
  • About author:杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317

摘要:

2011年与2012年于水培池种植超级稻品种两优培九(两系杂交籼稻)和扬粳4038 (粳稻)及常规高产品种扬稻6(籼稻)和扬辐粳8(粳稻),观察各生育期根系形态生理特征及其与产量形成的关系。结果表明,与常规高产品种相比,超级稻品种具有强大的产量潜力,其高产潜力主要得益于较多的每穗颖花数与较大的总库容量(单位地面积颖花量)。超级稻品种在整个生育期较大的根量、生育早中期较高的单株根系氧化力、根系总吸收表面积与活跃吸收表面积及根系中较高的玉米素与玉米素核苷含量是其产量库容大和产量高的重要原因。超级稻存在着结实率较低的问题,这可能与其在灌浆期根系活性下降较快有关。提高超级稻灌浆期根系活性,是提高其结实率、促进其产量进一步提高的重要途径。

关键词: 超级稻, 产量, 籽粒灌浆, 根系形态与生理

Abstract:

Two super rice cultivars, Liangyoupeijiu (indica-inclined two-line hybrid) and Yangjing 4038 (japonica), and two high-yielding rice cultivars, Yangdao 6 (indica) and Yangfujing 8 (japonica), were grown in nutrient solution in 2011 and 2012. Changes in morphological and physiological traits of roots at different growth stages and their relationships with growth and development were investigated. The results showed that both super rice varieties had greater yield potential and higher grain yield than the two elite check varieties,which was mainly due to the larger sink from the larger panicle in the super rice varieties. Root and shoot dry weight was significantly greater in super rice varieties than in check ones throughout the growth season. Root oxidation activity (ROA), total root absorbing surface area, active absorbing surface area and root zeatin (Z) plus zeatin riboside (ZR) content, on a single plant basis, were significantly greater in super rice than in check varieties at the early stage. The low percentage of filled grains was closely associated with a quickly decreased root activity during grain filling. These results suggest that the yield of super rice varieties could be further increased by increasing seed setting rate through enhancing root activity during the grain filling period.

Key words: Super rice, Grain yield, Grain filling, Morphology and physiology of roots

[1]Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Commun Soil Sci Plan, 2003, 34: 259–270



[2]苏泽胜, 李泽福. 安徽省超级稻研究与应用现状及展望. 沈阳农业大学学报, 2007, 38: 739–743



Su Z S, Li Z F. Present status and prospect of super rice research and utilization in Anhui Province. J Shenyang Agric Univ, 2007, 38: 739–743 (in Chinese with English abstract)



[3]程式华. 中国超级稻育种研究的创新与发展. 沈阳农业大学学报, 2007, 38: 647–651



Cheng S H. Innovation and development of rice breeding for super high yield in China. J Shenyang Agric Univ, 2007, 38: 647–651 (in Chinese with English abstract)



[4]Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009, 113: 31–40



[5]Yang J C, Zhang J H. Grain-filling problem in super rice. J Exp Bot, 2010, 61: 1–5



[6]Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non structural carbohydrate reserve in stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011, 123: 170–182



[7]付景, 徐云姬, 陈露, 袁莉民, 王志琴, 杨建昌. 超级稻花后强弱势粒淀粉合成相关酶活性和激素含量变化及其与籽粒灌浆的关系. 中国水稻科学, 2012, 26: 364–372



Fu J, Xu Y J, Chen L, Yuan L M, Wang Z Q, Yang J C. Post-anthesis changes in activities of the enzymes related to starch synthesis and contents of hormones in superior and inferior spikelets and their relations with grain filling of super rice. Chin J Rice Sci, 2012, 26: 364–372 (in Chinese with English abstract)



[8]Chen T T, Xu Y J, Wang J C, Wang Z Q, Yang J C, Zhang J H. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. J Exp Bot, 2013, 64: 2523–2538



[9]Katsura K, Maeda S, Horie T, Shiraiwa T. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crops Res, 2007, 103: 170–177



[10]王熹, 陶龙兴, 俞美玉, 黄效林. 超级杂交稻协优9308生理模型的研究. 中国水稻科学, 2002, 16: 38–44



Wang X, Tao L X, Yu M Y, Huang X L. Physiological model of super hybrid rice Xieyou 9308. Chin J Rice Sci, 2002, 16: 38–44 (in Chinese with English abstract)



[11]Yang L X, Wang Y L, Kobayashi K, Zhu J G, Huang J Y, Yang H J, Wang Y X, Dong G C, Liu G, Han Y, Shan Y H, Hu J, Zhou J. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Global Change Biol, 2008, 14: 1–10



[12]Wang H, Inukai Y, Yamauchi A. Root development and nutrient uptake. Crit Rev Plant Sci, 2006, 25: 279–301



[13]Zhang H, Tan G L, Yang L N, Yang J C, Zhang J H. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiol Biochem, 2009, 47: 195–204



[14]杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究. 中国农业科学, 1996, 29: 58–66



Yang J C, Wang Z Q, Zhu Q S. Effect of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture. Sci Agric Sin, 1996, 29: 58–66 (in Chinese with English abstract)



[15]张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社, 2003. pp 38–39



Zhang Z L, Qu W J. Plant Physiology Test Guide. Beijing: Higher Education Press, 2003. pp 38–39 (in Chinese)



[16]陈远平, 杨文钰. 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定. 四川农业大学学报, 2005, 23: 498–500



Chen Y P, Yang W Y. Determination of GA3, IAA, ABA and ZT in dormant buds of Allium ovalif olium by HPLC. J Sichuan Agric Univ, 2005, 23: 498–500 (in Chinese with English abstract)



[17]朱德峰, 林贤青, 曹卫星. 超高产水稻品种的根系分布特点. 南京农业大学学报, 2000, 23: 5–8



Zhu D F, Lin X Q, Cao W X. Characteristics of root distribution of super high-yielding rice varieties. J Nanjing Agric Univ, 2000, 23: 5–8 (in Chinese with English abstract)



[18]陈达刚, 周新桥, 李丽君, 刘传光, 张旭, 陈友订. 华南主栽高产籼稻根系形态特征及其与产量构成的关系. 作物学报, 2013, 39: 1899–1908



Chen D G, Zhou X Q, Li L J, Liu C G, Zhang X, Chen Y D. Relationship between root morphological characteristics and yield components of major commercial indica rice in south China. Acta Agron Sin, 2013, 39: 1899–1908 (in Chinese with English abstract)



[19]唐文帮, 邓化冰, 肖应辉, 张桂莲, 范科, 莫慧, 陈立云. 两系杂交水稻C两优系列组合的高产根系特征. 中国农业科学, 2010, 43: 2859–2868



Tang W B, Deng H B, Xiao Y H, Zhang G L, Fan K, Mo H, Chen L Y. Root characteristics of high-yield C Liangyou rice combinations of two-line hybrid rice. Sci Agric Sin, 2010, 43: 2859–2868 (in Chinese with English abstract)



[20]蔡昆争, 骆世明, 段舜山. 水稻根系在根袋处理条件下对氮养分的反应. 生态学报, 2003, 23: 1109–1116



Cai Z K, Luo S M, Duan S S. The response of the rice root system to nitrogen conditions under-root confinement. Acta Ecol Sin, 2003, 23: 1109–1116 (in Chinese with English abstract)



[21]汪强, 樊小林, 刘芳, 李方敏, Klaus D, Sattemacher B. 断根和覆草旱作条件下水稻的产量效应. 中国水稻科学, 2004, 18: 437–442



Wang Q, Fan X L, Liu F, Li F M, Klaus D, Sattemacher B. Effect of root cutting on rice yield by shifting normal paddy to upland cultivation. Chin J Rice Sci, 2004, 18: 437–442 (in Chinese with English abstract)



[22]蔡永萍, 杨其光, 黄义德. 水稻水作与旱作对抽穗后剑叶光合特性、衰老及根系活性的影响. 中国水稻科学, 2000, 14: 219–224



Cai Y P, Yang Q G, Huang Y D. Effect of rice cultivated under paddy and upland condition on photosynthesis and senescence of flag leaf and activity of root system after heading. Chin J Rice Sci, 2000, 14: 219–224 (in Chinese with English abstract)



[23]Cao S Q, Zhang R X, Lu W, Deng Z R, Zeng Q M. The involvement of cytokinin and abscisic acid levels in roots in the regulation of photosynthesis function in flag leaves during grain filling in super high-yielding rice (Oryza sativa L.). J Agron Crop Sci, 2004, 190: 73–80



[24]许明, 贾德涛, 马殿荣, 王嘉宇, 苗微, 陈温福. 北方超级粳稻根系生理、叶片光合性能特点及其相互关系.作物学报, 2010, 36: 1030−1036



Xu M, Jia D T, Ma D R, Wang J Y, Miao W, Chen W F. Correlation of root physiology and leaf photosynthesis characteristics in northern Chinese japonica super rice. Acta Agron Sin, 2010, 36: 1030−1036 (in Chinese with English abstract)



[25]付景, 陈露, 黄钻华, 王志琴, 杨建昌. 超级稻叶片光合特性和根系生理性状与产量的关系. 作物学报, 2012, 38: 1264–1276



Fu J, Chen L, Huang Z H, Wang Z Q, Yang J C. Relationship of leaf photosynthetic characteristics and root physiological traits with grain yield in super rice. Acta Agron Sin, 2012, 38: 1264–1276 (in Chinese with English abstract)



[26]郭士伟, 夏士健, 朱虹霞, 张云华, 施卫明. 水稻根系活力测定方法及超级稻两优培九生育后期根系活力研究. 土壤, 2012, 44: 308–311



Guo S W, Xia S J, Zhu H X, Zhang Y H, Shi W M. Factors influencing collecting amount of rice roots bleeding and investigation on roots vigor after heading. Soils, 2012, 44: 308–311 (in Chinese with English abstract)



[27]Zhang H, Chen T T, Liu L J, Wang Z Q, Yang J C, Zhang J H. Performance in grain yield and physiological traits of rice in the Yangtze river basin of China during the last 60 yr. J Integr Agric, 2013, 12: 57−66



[28]Cheng S H, Zhuang J Y, Fan Y Y, Du J H, Cao L Y. Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot-London, 2007, 100: 959−966



[29] Peng S B, Khush G S, Virk P, Tang Q Y, Zou Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32−38

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!