欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (02): 318-328.doi: 10.3724/SP.J.1006.2015.00318

• 耕作栽培·生理生化 • 上一篇    下一篇

基于生物量的油菜越冬前植株叶片空间形态结构模型

张伟欣1,2,曹宏鑫2,*,朱艳1,*,刘岩2,张文宇2,陈昱利2,傅坤亚1,2   

  1. 1南京农业大学农学院,江苏南京 210095;2江苏省农业科学院农业经济与信息研究所 / 数字农业工程技术研究中心,江苏南京 210014
  • 收稿日期:2014-06-16 修回日期:2014-09-30 出版日期:2015-02-12 网络出版日期:2014-11-11
  • 通讯作者: 曹宏鑫, E-mail: caohongxin@hotmail.com; 朱艳, E-mail: yanzhu@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31171455,31201127,31471415), 国家公益性行业(气象)科研专项(GYHY201106027), 江苏省科技支撑计划课题 (BE2012386-1)和江苏省农业科技自主创新资金项目(CX(14)2114) 资助。

Morphological Structure Model of Leaf Space Based on Biomass at Pre-Overwintering Stage in Rapeseed (Brassica napus L.) Plant

ZHANG Wei-Xin1,2,CAO Hong-Xin2,*,ZHU Yan1,*,LIU Yan2,ZHANG Wen-Yu2,CHEN Yu-Li2,FU Kun-Ya1,2   

  1. 1 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Agricultural Economy and Information / Engineering Research Center for Digital Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2014-06-16 Revised:2014-09-30 Published:2015-02-12 Published online:2014-11-11
  • Contact: 曹宏鑫, E-mail: caohongxin@hotmail.com; 朱艳, E-mail: yanzhu@njau.edu.cn

摘要:

油菜越冬前的形态建成是油菜苗后期乃至整个生长中、后期的物质基础,叶片是该期最重要的营养器官。为了明确油菜植株的形态结构要素与器官生物量的关系,以3个甘蓝型油菜品种为材料,于2011—2013年分别设置品种和肥料试验、品种、肥料和密度试验、品种试验,越冬前测定油菜植株不同叶位叶片形态指标,分析油菜主茎叶片形态参数与叶片干物重的关系,构建基于生物量的油菜越冬前植株叶片空间形态结构模型。建模后以独立试验数据检验,除短柄长、叶切角和叶弦角、不施肥品种叶片干物重分配系数值(partitioning coefficient of leaf blade dry weight, CPLB)误差较大外,油菜越冬前植株叶片空间形态结构模型观察值与模拟值拟合度较好,所建模型可靠性较好,具有一定的解释性。

关键词: 油菜, 叶片, 生物量, 形态结构, 模型

Abstract:

Rapeseed morphogenesis at pre-overwintering stage is the basis of growth and development of rapeseed in whole growth stage, and the leaf blades are important vegetative organ in this stage. To quantify the relationships between rapeseed plant architecture indices and the corresponding organ biomass, we used three cultivars including (V1) Ningyou 18 (conventional variety), (V2) Ningyou 16 (conventional variety), and (V3) Ningza 19 (hybrid) in the field experiments, and designed treatment of variety-fertilizer, variety-fertilizer-density, and variety tests in 2011–2012 and 2012–2013, with three fertilizer levels of no fertilizer, normal fertilizer (N, P2O5, K2O are 90 kg ha–1), and high fertilizer (N, P2O5, K2O are 180 kg ha–1), and three density levels of D1 (6×104 plant ha–1), D2 (1.2×105 plant ha–1), and D3 (1.8×105 plant ha–1). Morphological indices were determined at pre-overwintering stage, the biomass-based rapeseed aboveground structure model was established with morphological indices, and the relationships between leaf blade indices and leaf blade biomass were analyzed. The models were verified using independent experiment data in 2011–2012, and 2012–2013, showing that the simulated values from the rapeseed plant leaf space morphological structure models, such as leaf blade length, leaf blade width, leaf blade bowstring length, leaf blade petiole length, and leaf blade angle from 2011 to 2012 were goodness of fit to observed values, and their da values and RMSE values were –0.231 cm, 2.102 cm (n=63); –0.273 cm, 0.484 cm (n=63); –0.343 cm, 1.963 cm (n=63); 0.412 cm, 2.095 cm (n=36); –0.635 cm, 1.006 cm (n=27); 4.421°, 14.734° (n=63); 6.642°, 21.817° (n=63), respectively. The correlation between observation and simulation in the morphological indices were significant at P<0.001, but the dap values were less than 5% for the leaf blade length and the leaf blade bowstring length, which indicated that these models’ accuracy is high. The simulated values of the models had better consistency and better reliability with the observed values at pre-overwintering stage except for petiole length of the short-petiole leaves, leaf tangent angle, leaf bowstring angle, and the CPLB (partitioning coefficient of blade dry weight) under the condition of no fertilizer.

Key words: Rapeseed (Brassica napus L.), Leaf blade, Biomass, Morphological structure, Model

[1]王汉中. 中国油料供需形势、问题与发展对策. 北京: 中国农业科学技术出版社, 2002. pp 3–8

Wang H Z. Supply and Demand, Issues, and Development Countermeasures of China Oilseeds Industry. Beijing: China Agricultural Science and Technology Press, 2002. pp 3–8

[2]Williams J R, Jones C A, Kiniry J R, Spanel D A. The EPIC crop growth model. Trans ASAE, 32: 497–511

[3]Kiniry J R, Major D J, Lzaurralde R C, Williams J R, Gassman P W, Morrison M, Bergentine R, Zentener R P. EPIC model parameters for cereal, oil seed, and forage crop in the north Great Plain region. Can J Plant Sci, 1983, 63: 1063–1065

[4]Precision Farming-The Epic Model. http://www.grida. no/prog/global/cgiar/awpack/farm.html

[5]Petersen C T, Jorgensen U, Svendsen H, Hansen S, Jensen N E, Nielsen. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape. Eur J Agron, 1995, 4: 77–89

[6]Habekotte B. Evalation of seed yield determining factors of winter oilseed rape (Brassica napus L.). Field Crops Res, 1997, 54: 137–151

[7]Habekott B. A model of the phenological development of winter oilseed rape (Brassica napus L.). Field Crops Res, 1997, 54: 127–136

[8]Gabriel le B, Denoroy P, Gosse G, Justes E, Andersen M N. Development and evaluation of a CERES-type model f or winter oil seed rape. Field Crops Res, 1998, 57: 95–111

[9]Robertson M J, Holland J F, Kirkegaard J A, Smith C J. Simulation growth and development of canola in Australia. In: Proceedings of the 10th International Rapeseed Congress, Canberra, Australia,1999

[10]Zhang C L, Li G M, Cao H X. Simulating growth and development of winter rape in Yangtze River valley. In: Proceedings of 11th International Rapeseed Congress, Copenhagen, Denmark, 6–10, July, 2003. p 835

[11]刘洪, 金之庆. 油菜发育动态模拟模型. 应用气象学报, 2003, 14: 634–640

Liu H, Jin Z Q. A phonological model to simulate rape development. J Appl Meteorol Sin, 2003, 14: 634–640 (in Chinese with English Abstract)

[12]廖桂平, 官春云. 甘蓝型冬油菜(Brassica napus)干物质积累、分配与转移的特性研究. 作物学报, 2002, 28: 52–58

Liao G P, Guan C Y. Study on characteristics of dry matter accumulation, distribution and transfer of winter rapeseed (Brassica napus L.). Acta Agron Sin, 2002, 28: 52–58 (in Chinese with English Abstract)

[13]廖桂平, 官春云, 陈社员. 基于Web的油菜生产专家系统的研究与应用. 农业系统科学与综合研究, 2005, 21(1): 8–11

Liao G P, Guan C Y, Chen S Y. Research and application of web-based rapeseed (Brassica napus L.) production expert system. Syst Sci Compreh Studies Agric, 2005, 21: 8–11 (in Chinese with English Abstract)

[14]刘铁梅, 胡立勇, 赵祖红, 曹凑贵, 曹卫星, 严美春. 油菜发育过程及生育期机理模型的研究: I. 模型的描述. 中国油料作物学报, 2004, 26: 27–31

Liu T M, Hu L Y, Zhao Z H, Cao C G, Cao W X, Yan M C. A mechanistic of phasic and phenological development in rape: I. Description of the model. Chin J Oil Crop Sci, 2004, 26: 27–31 (in Chinese with English Abstract)

[15]胡立勇, 刘铁梅, 郑小林, 曹凑贵, 曹卫星, 严美春. 油菜发育过程及生育期机理模型的研究: II. 模型的检验和评价. 中国油料作物学报, 2004, 26: 51–55

Hu L Y, Liu T M, Zheng X L, Cao C G, Cao W X, Yan M C. A mechanistic model of phasic and phenological development in rape: II. Validation and evaluation of the model. Chin J Oil Crop Sci, 2004, 26: 51–55 (in Chinese with English Abstract)

[16]曹宏鑫, 张春雷, 李光明, 张保军, 赵锁劳, 汪宝卿, 金之庆. 油菜生长发育模拟模型研究. 作物学报, 2006, 32: 1530–1536

Cao H X, Zhang C L, Li G M, Zhang B J, Zhao S L, Wang B Q, Jin Z Q. Researches of simulation models of rape (Brassica napus L.) growth and development. Acta Agron Sin, 2006, 32: 1530–1536 (in Chinese with English Abstract)

[17]汤亮, 朱艳, 刘铁梅, 曹卫星. 油菜生育期模拟模型研究. 中国农业科学, 2008, 41: 2493–2498

Tang L, Zhu Y, Liu T M, Cao W X. Process-based model for simulating phonological development in rapeseed. Sci Agric Sin, 2008, 41: 2493–2498 (in Chinese with English abstract)

[18]Groer C, Kniemeyer O, Hemmerling R, Kurth W, Becker H, Buck-Sorlin G. H. A dynamic 3D model of rape (Brassica napus L.) computing yield components under variable nitrogen fertilization regimes. 2007, http:// algorithmicbotany.org/FSPM07/proceedings.html

[19]Müller J, Braune H, Wernecke P, Diepenbrock W. Towards universality and modularity: a generic photosynthesis and transpiration module for functional structural plant models. 2007, http:// algorithmicbotany.org/FSPM07/proceedings.html

[20]Jullien A, Mathieu A, Allirand J M, Pinet A, de Reffye P, Ney B, Courne?de, P.-H. Modelling of branch and flower expansion in GreenLab model to account for the whole crop cycle of winter oilseed rape (Brassica Napus L.). In: 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Beijing, China. pp. 167–174

[21]廖桂平, 李锦卫, 欧中斌, 聂敏. 基于参数L-系统的油菜花朵与花序生长可视化研究. 农业工程学报, 2009, 25(4): 150–156

Liao G P, Li J W, Ou Z B, Nie M. Visual growth of flower and inflorescence of rapeseed (Brassica napus L.) based on parametric L-system. Transac. CSAE, 2009, 25(4): 150–156 (in Chinese with English abstract)

[22]欧中斌. 油菜生长可视化仿真关键技术研究. 湖南农业大学硕士学位论文, 湖南长沙, 2007

Ou Z B. Study on the Visual Simulation Key Technology of Rapeseed (Brassica napus L.) Growth. MS Thesis of Hunan Agricultural University, Changsha, China, 2007 (in Chinese with English abstract)

[23]岳延滨. 油菜植株形态结构模型及可视化. 南京农业大学硕士学位论文, 江苏南京, 2010

Yue Y B. The Morphological Structural Model and Visualization of Rapeseed (Brassica napus L.) Plant. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2010 (in Chinese with English abstract)

[24]赵丽丽, 郭新宇, 温维亮, 陆声链, 肖伯祥. 油菜花序三维形态结构数字化设计技术研究. 农机化研究, 2011, 5: 191–194

Zhao L L, Guo X Y, Wen W L, Lu S L, Xiao B X. Research on digital design for 3D shape of the rape inflorescence. J Agric Mech Res, 2011, 5: 191–194 (in Chinese with English abstract)

[25]赵丽丽, 温维亮, 彭亚宇, 郭新宇, 陆声链, 杜建军. 幼苗期油菜几何造型研究. 安徽农业科学, 2011, 39: 14005–14007

Zhao L L, Wen W L, Peng Y Y, Guo X Y, Lu S L, Du J J. Geometric modeling of (Brassica campestris L.) during seedling stage. Anhui Agric Sci, 2011, 39: 14005–14007 (in Chinese with English abstract)

[26]Cao H-X, Liu Y, Liu Y X, Hanan J S., Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Biomass-based rice (Oryza sativa L.) aboveground architectural parameter models. J Integr Agric, 2012, 11: 101–108

[27]Cao H X, Hanan J S., Liu Y, Liu Y X, Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Comparison of crop model validation methods. J Integr Agric, 2012, 11: 1274–1285

[28]刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究, 中国农业科学, 2009, 42: 4093–4099

Liu Y, Lu J F, Cao H X, Shi C L, Liu Y X, Zhu D W, Sun J Y, Yue Y B, Wei X F, Tian P P, Bao T L. Main geometrical parameter models of rice blade based on biomass. Sci Agric Sin, 2009, 42: 4093–4099 (in Chinese with English abstract)

[29]Zhao Z Y, Yue Y B, Nie K Y, Li L J, Peng Z L, Sun C Q, Wang R Y, Li Y R. Study on morphological simulation models of chili pepper leaves. Guizhou Agric Sin, 2012, 40: 182–186

[30]刘宏伟, 吴斌, 张红英, 李芳, 邵延华. 水稻叶片几何模型及其可视化研究. 计算机工程, 2009, 35: 263–268

Liu H W, Wu B, Zhang H Y, Li F, Shao Y H. Research on rice leaf geometric model and its visualization. Comput Engin, 2009, 35: 263–268 (in Chinese with English abstract)

[31]朱艳, 刘小军, 谭子辉, 汤亮, 田永超, 姚霞, 曹卫星. 冬小麦叶色动态的量化研究. 中国农业科学, 2008, 41: 3851–3857

Zhu Y, Liu X J, Tan Z H, Tang L, Tian Y C, Yao X, Cao W X. Sci Agric Sin, 2008, 41: 3851–3857 (in Chinese with English abstract

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[5] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[6] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[9] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[10] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[11] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[12] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[13] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[14] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[15] 牛丽, 白文波, 李霞, 段凤莹, 侯鹏, 赵如浪, 王永宏, 赵明, 李少昆, 宋吉青, 周文彬. 地膜覆盖对黄土高原地区两种种植密度下玉米叶片代谢组的影响[J]. 作物学报, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!