作物学报 ›› 2015, Vol. 41 ›› Issue (02): 318-328.doi: 10.3724/SP.J.1006.2015.00318
张伟欣1,2,曹宏鑫2,*,朱艳1,*,刘岩2,张文宇2,陈昱利2,傅坤亚1,2
ZHANG Wei-Xin1,2,CAO Hong-Xin2,*,ZHU Yan1,*,LIU Yan2,ZHANG Wen-Yu2,CHEN Yu-Li2,FU Kun-Ya1,2
摘要:
油菜越冬前的形态建成是油菜苗后期乃至整个生长中、后期的物质基础,叶片是该期最重要的营养器官。为了明确油菜植株的形态结构要素与器官生物量的关系,以3个甘蓝型油菜品种为材料,于2011—2013年分别设置品种和肥料试验、品种、肥料和密度试验、品种试验,越冬前测定油菜植株不同叶位叶片形态指标,分析油菜主茎叶片形态参数与叶片干物重的关系,构建基于生物量的油菜越冬前植株叶片空间形态结构模型。建模后以独立试验数据检验,除短柄长、叶切角和叶弦角、不施肥品种叶片干物重分配系数值(partitioning coefficient of leaf blade dry weight, CPLB)误差较大外,油菜越冬前植株叶片空间形态结构模型观察值与模拟值拟合度较好,所建模型可靠性较好,具有一定的解释性。
[1]王汉中. 中国油料供需形势、问题与发展对策. 北京: 中国农业科学技术出版社, 2002. pp 3–8Wang H Z. Supply and Demand, Issues, and Development Countermeasures of China Oilseeds Industry. Beijing: China Agricultural Science and Technology Press, 2002. pp 3–8[2]Williams J R, Jones C A, Kiniry J R, Spanel D A. The EPIC crop growth model. Trans ASAE, 32: 497–511[3]Kiniry J R, Major D J, Lzaurralde R C, Williams J R, Gassman P W, Morrison M, Bergentine R, Zentener R P. EPIC model parameters for cereal, oil seed, and forage crop in the north Great Plain region. Can J Plant Sci, 1983, 63: 1063–1065[4]Precision Farming-The Epic Model. http://www.grida. no/prog/global/cgiar/awpack/farm.html[5]Petersen C T, Jorgensen U, Svendsen H, Hansen S, Jensen N E, Nielsen. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape. Eur J Agron, 1995, 4: 77–89[6]Habekotte B. Evalation of seed yield determining factors of winter oilseed rape (Brassica napus L.). Field Crops Res, 1997, 54: 137–151[7]Habekott B. A model of the phenological development of winter oilseed rape (Brassica napus L.). Field Crops Res, 1997, 54: 127–136[8]Gabriel le B, Denoroy P, Gosse G, Justes E, Andersen M N. Development and evaluation of a CERES-type model f or winter oil seed rape. Field Crops Res, 1998, 57: 95–111[9]Robertson M J, Holland J F, Kirkegaard J A, Smith C J. Simulation growth and development of canola in Australia. In: Proceedings of the 10th International Rapeseed Congress, Canberra, Australia,1999[10]Zhang C L, Li G M, Cao H X. Simulating growth and development of winter rape in Yangtze River valley. In: Proceedings of 11th International Rapeseed Congress, Copenhagen, Denmark, 6–10, July, 2003. p 835[11]刘洪, 金之庆. 油菜发育动态模拟模型. 应用气象学报, 2003, 14: 634–640Liu H, Jin Z Q. A phonological model to simulate rape development. J Appl Meteorol Sin, 2003, 14: 634–640 (in Chinese with English Abstract)[12]廖桂平, 官春云. 甘蓝型冬油菜(Brassica napus)干物质积累、分配与转移的特性研究. 作物学报, 2002, 28: 52–58Liao G P, Guan C Y. Study on characteristics of dry matter accumulation, distribution and transfer of winter rapeseed (Brassica napus L.). Acta Agron Sin, 2002, 28: 52–58 (in Chinese with English Abstract)[13]廖桂平, 官春云, 陈社员. 基于Web的油菜生产专家系统的研究与应用. 农业系统科学与综合研究, 2005, 21(1): 8–11Liao G P, Guan C Y, Chen S Y. Research and application of web-based rapeseed (Brassica napus L.) production expert system. Syst Sci Compreh Studies Agric, 2005, 21: 8–11 (in Chinese with English Abstract)[14]刘铁梅, 胡立勇, 赵祖红, 曹凑贵, 曹卫星, 严美春. 油菜发育过程及生育期机理模型的研究: I. 模型的描述. 中国油料作物学报, 2004, 26: 27–31Liu T M, Hu L Y, Zhao Z H, Cao C G, Cao W X, Yan M C. A mechanistic of phasic and phenological development in rape: I. Description of the model. Chin J Oil Crop Sci, 2004, 26: 27–31 (in Chinese with English Abstract)[15]胡立勇, 刘铁梅, 郑小林, 曹凑贵, 曹卫星, 严美春. 油菜发育过程及生育期机理模型的研究: II. 模型的检验和评价. 中国油料作物学报, 2004, 26: 51–55Hu L Y, Liu T M, Zheng X L, Cao C G, Cao W X, Yan M C. A mechanistic model of phasic and phenological development in rape: II. Validation and evaluation of the model. Chin J Oil Crop Sci, 2004, 26: 51–55 (in Chinese with English Abstract)[16]曹宏鑫, 张春雷, 李光明, 张保军, 赵锁劳, 汪宝卿, 金之庆. 油菜生长发育模拟模型研究. 作物学报, 2006, 32: 1530–1536Cao H X, Zhang C L, Li G M, Zhang B J, Zhao S L, Wang B Q, Jin Z Q. Researches of simulation models of rape (Brassica napus L.) growth and development. Acta Agron Sin, 2006, 32: 1530–1536 (in Chinese with English Abstract)[17]汤亮, 朱艳, 刘铁梅, 曹卫星. 油菜生育期模拟模型研究. 中国农业科学, 2008, 41: 2493–2498Tang L, Zhu Y, Liu T M, Cao W X. Process-based model for simulating phonological development in rapeseed. Sci Agric Sin, 2008, 41: 2493–2498 (in Chinese with English abstract)[18]Groer C, Kniemeyer O, Hemmerling R, Kurth W, Becker H, Buck-Sorlin G. H. A dynamic 3D model of rape (Brassica napus L.) computing yield components under variable nitrogen fertilization regimes. 2007, http:// algorithmicbotany.org/FSPM07/proceedings.html[19]Müller J, Braune H, Wernecke P, Diepenbrock W. Towards universality and modularity: a generic photosynthesis and transpiration module for functional structural plant models. 2007, http:// algorithmicbotany.org/FSPM07/proceedings.html[20]Jullien A, Mathieu A, Allirand J M, Pinet A, de Reffye P, Ney B, Courne?de, P.-H. Modelling of branch and flower expansion in GreenLab model to account for the whole crop cycle of winter oilseed rape (Brassica Napus L.). In: 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Beijing, China. pp. 167–174[21]廖桂平, 李锦卫, 欧中斌, 聂敏. 基于参数L-系统的油菜花朵与花序生长可视化研究. 农业工程学报, 2009, 25(4): 150–156Liao G P, Li J W, Ou Z B, Nie M. Visual growth of flower and inflorescence of rapeseed (Brassica napus L.) based on parametric L-system. Transac. CSAE, 2009, 25(4): 150–156 (in Chinese with English abstract)[22]欧中斌. 油菜生长可视化仿真关键技术研究. 湖南农业大学硕士学位论文, 湖南长沙, 2007Ou Z B. Study on the Visual Simulation Key Technology of Rapeseed (Brassica napus L.) Growth. MS Thesis of Hunan Agricultural University, Changsha, China, 2007 (in Chinese with English abstract)[23]岳延滨. 油菜植株形态结构模型及可视化. 南京农业大学硕士学位论文, 江苏南京, 2010Yue Y B. The Morphological Structural Model and Visualization of Rapeseed (Brassica napus L.) Plant. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2010 (in Chinese with English abstract)[24]赵丽丽, 郭新宇, 温维亮, 陆声链, 肖伯祥. 油菜花序三维形态结构数字化设计技术研究. 农机化研究, 2011, 5: 191–194Zhao L L, Guo X Y, Wen W L, Lu S L, Xiao B X. Research on digital design for 3D shape of the rape inflorescence. J Agric Mech Res, 2011, 5: 191–194 (in Chinese with English abstract)[25]赵丽丽, 温维亮, 彭亚宇, 郭新宇, 陆声链, 杜建军. 幼苗期油菜几何造型研究. 安徽农业科学, 2011, 39: 14005–14007Zhao L L, Wen W L, Peng Y Y, Guo X Y, Lu S L, Du J J. Geometric modeling of (Brassica campestris L.) during seedling stage. Anhui Agric Sci, 2011, 39: 14005–14007 (in Chinese with English abstract)[26]Cao H-X, Liu Y, Liu Y X, Hanan J S., Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Biomass-based rice (Oryza sativa L.) aboveground architectural parameter models. J Integr Agric, 2012, 11: 101–108[27]Cao H X, Hanan J S., Liu Y, Liu Y X, Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Comparison of crop model validation methods. J Integr Agric, 2012, 11: 1274–1285[28]刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究, 中国农业科学, 2009, 42: 4093–4099Liu Y, Lu J F, Cao H X, Shi C L, Liu Y X, Zhu D W, Sun J Y, Yue Y B, Wei X F, Tian P P, Bao T L. Main geometrical parameter models of rice blade based on biomass. Sci Agric Sin, 2009, 42: 4093–4099 (in Chinese with English abstract)[29]Zhao Z Y, Yue Y B, Nie K Y, Li L J, Peng Z L, Sun C Q, Wang R Y, Li Y R. Study on morphological simulation models of chili pepper leaves. Guizhou Agric Sin, 2012, 40: 182–186[30]刘宏伟, 吴斌, 张红英, 李芳, 邵延华. 水稻叶片几何模型及其可视化研究. 计算机工程, 2009, 35: 263–268Liu H W, Wu B, Zhang H Y, Li F, Shao Y H. Research on rice leaf geometric model and its visualization. Comput Engin, 2009, 35: 263–268 (in Chinese with English abstract)[31]朱艳, 刘小军, 谭子辉, 汤亮, 田永超, 姚霞, 曹卫星. 冬小麦叶色动态的量化研究. 中国农业科学, 2008, 41: 3851–3857Zhu Y, Liu X J, Tan Z H, Tang L, Tian Y C, Yao X, Cao W X. Sci Agric Sin, 2008, 41: 3851–3857 (in Chinese with English abstract |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[5] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[6] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[9] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[10] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[11] | 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496. |
[12] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[13] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[14] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[15] | 牛丽, 白文波, 李霞, 段凤莹, 侯鹏, 赵如浪, 王永宏, 赵明, 李少昆, 宋吉青, 周文彬. 地膜覆盖对黄土高原地区两种种植密度下玉米叶片代谢组的影响[J]. 作物学报, 2021, 47(8): 1551-1562. |
|