欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (05): 797-805.doi: 10.3724/SP.J.1006.2015.00797

• 研究简报 • 上一篇    下一篇

扬糯麦1号8000 kg hm-2以上高产群体质量指标

訾妍1,丁锦峰1,2,黄正金1,王丽爱1,鞠峰1,翟超越1,蒋伟1,朱新开1,2,李春燕1,2,郭文善1,2,*   

  1. 1江苏省作物遗传生理重点实验室 / 扬州大学粮食作物现代产业技术协同创新中心, 江苏扬州 225009; 2 扬州大学小麦研究中心, 江苏扬州 225009
  • 收稿日期:2014-09-19 修回日期:2015-04-02 出版日期:2015-05-12 网络出版日期:2015-04-03
  • 通讯作者: 郭文善, E-mail: guows@yzu.edu.cn, Tel: 0514-87979339
  • 基金资助:

    本研究由国家自然科学基金项目(31071340),江苏高校优势学科建设工程项目,江苏省农业三项工程(SXGC[2012]400,SXGC[2013]400),江苏高校优秀科技创新团队项目和江苏省普通高校研究生科研创新计划项目(KYLX_1350)资助.

Population Quality Indexes for Waxy Wheat Yangnuomai 1 with Yield Higher than 8000 kg ha–1

ZI Yan1,DING Jin-Feng1,2,HUANG Zheng-Jin1,WANG Li-Ai1,JU Feng1,ZHAI Chao-Yue1,JIANG Wei1,ZHU Xin-Kai1,2,LI Chun-Yan1,2,GUO Wen-Shan1,2,*   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; 2 Wheat Research Center, Yangzhou University, Yangzhou 225009, China
  • Received:2014-09-19 Revised:2015-04-02 Published:2015-05-12 Published online:2015-04-03
  • Contact: 郭文善, E-mail: guows@yzu.edu.cn, Tel: 0514-87979339

摘要:

糯小麦因其独特的品质特性而在食品加工等领域有广泛的用途,但其高产栽培配套技术却鲜有研究,制约了该特种小麦的生产。201011月至20136月连续3个生长季,以扬糯麦1号为材料,通过密度和氮肥施用量及不同生育期施氮比例处理,构建不同产量水平群体,研究不同群体的产量结构及群体质量特征,以明确高产群体的产量结构及群体质量指标。结果表明,扬糯麦18000 kg hm-2高产群体的产量构成三要素特点是每公顷520~550万穗、每穗43~46粒、千粒重32~37 g。高产群体拔节期最适茎蘖数为穗数的2.3~2.5倍,茎蘖成穗率为44%~49%,分蘖成穗率为25%~33%,孕穗期和乳熟期的最适叶面积指数(LAI)分别为6.2~6.53.2~4.0,开花期干物质积累量为10 000~11 600 kg hm-2,花后干物质积累量达5900 kg hm-2以上,适宜粒叶比达0.36 cm-2叶和12.40 mg cm-2叶以上。高产群体各生育时期LAI值、花后干物质积累量和粒叶比均高于中高产群体(7500~8000 kg hm-2)及中产群体(<7500 kg hm-2)3年中扬糯麦1号均达到高产指标的小区具有以下特征:基本苗为225×104 hm-2,总施氮量为240 kg hm-2,氮肥运筹(基肥:壮蘖肥:拔节肥:孕穗肥)比例为5122

关键词: 糯小麦, 群体质量, 产量

Abstract:

Waxy wheat (Triticum aestivum L.) has a promising production due to its specific quality and wide uses in many fields. However, the cultivation techniques for high-yielding waxy wheat have seldom been studied. In this study, we conducted a three-year field experiment from November 2010 to June 2013 to make clear the population characters of Yangnuomai 1, a waxy wheat variety, at the yield level of 8000 kg ha–1. With different grain yields were constructed by different levels of seedling density and nitrogen application amount, as well as different ratios of nitrogen applied before seeding and at the growth stages of tillering, elongation, and booting in waxy wheat variety Yangnuomai 1, three types of populations were designed under the co-regulation of plant density, nitrogen application rate and split ratio. The HY population ( ≥8000 kg ha–1) was characterized with 5.2–5.5 million spikes ha–1, 43–46 grains per spike and thousand-grain yield of 32–37 g. In HY population at jointing stage, the number of main stem and tillers was 2.3–2.5 folds over the final spike number, the earing percentage of main stem and tillers was 44–49% and the earing percentage of tillers was 25–33%. At booting and milk stage, the suitable leaf area indices (LAI) of HY population were 6.2–6.5 and 3.2–4.0, respectively. The dry matter accumulation amount at anthesis was 10 000–11 600 kg ha-1, and the dry matter accumulated from anthesis to maturity was higher than 5900 kg ha–1. At maturity stage, the grain/leaf ratios of HY population were 0.36 grains per square centimeter leaf and 12.40 mg grain per square centimeter leaf. Compared to MHY (moderately-high-yielding population, 7500–8000 kg ha–1) and MY (middle-yielding population, <7500 kg ha–1), HY population exhibited higher LAI at various stages, lager dry matter accumulation amount after anthesis, and higher values of both grain/leaf ratios. The common plot for HY population in three years was designed with seedling density of 2.25 ´ 106 ha–1 and total nitrogen amount of 240 kg ha-1 with splitting application at before seeding, tillering, jointing, and booting stages (5:1:2:2).

Key words: Waxy wheat, Population quality, Grain yield

[1]Bhattacharya M, Erazo-Castrejon S V, Doehkert D C, Mcmullen M S. Stalling of bread as affected by waxy wheat flour blends. Cereal Chem, 2002, 79: 178–182



[2]Waniska R D, Graybosch R A, Adams J L. Effect of partial waxy wheat on processing and quality of wheat flour tortillas. Cereal Chem, 2002, 79: 210–214



[3]张晓, 高德荣, 吕国锋, 吴宏亚, 张伯桥, 李曼. 糯小麦与其它作物淀粉特性的比较研究. 中国农业科学, 2013, 46: 2183–2190



Zhang X, Gao D R, Lü G F, Wu H Y, Zhang B Q, Li M. Comparison of the starches properties of waxy wheat and other crops. Sci Agric Sin, 2013, 46: 2183–2190 (in Chinese with English abstract)



[4]陆成彬, 张伯桥, 高德荣, 范金平, 程顺和. 弱筋小麦高产优质栽培模式研究. 麦类作物学报, 2006, 26(6): 91–94



Lu C B, Zhang B Q, Gao D R, Fan J P, Cheng S H. Optimum cultivation scheme for high yield and good quality of weak gluten wheat. J Triticeae Crops, 2006, 26(6): 91–94 (in Chinese with English abstract)



[5]刘强, 葛鑫, 于松溪, 冒布厂, 戴其根, 许轲. 氮肥运筹对强筋小麦济南17群体结构和产量的影响. 耕作与栽培, 2003, (5): 7–12



Liu Q, Ge X, Yu S X, Mao B C, Dai Q G, Xu K. Effect of nitrogen strategy on population structure and grain yield in high-gluten wheat Jinan 17. Tillage Cult, 2003, (5): 7–12 (in Chinese)



[6]朱新开, 郭文善, 周正权, 封超年, 彭永欣, 凌启鸿. 氮肥对中筋小麦扬麦10号氮素吸收、产量和品质的调节效应. 中国农业科学, 2004, 37: 1831–1837



Zhu X K, Guo W S, Zhou Z Q, Feng C N, Peng Y X, Ling Q H. Effects of nitrogen fertilizer on N absorption, yield and quality of medium-gluten wheat Yangmai 10. Sci Agric Sin, 2004, 37: 1831–1837 (in Chinese with English abstract)



[7]朱新开, 郭文善, 周君良, 胡宏, 张影, 李春燕, 封超年, 彭永欣. 氮素对不同类型专用小麦营养和加工品质调控效应. 中国农业科学, 2003, 36: 640–645



Zhu X K, Guo W S, Zhou J L, Hu H, Zhang Y, Li C Y, Feng C N, Peng Y X. Effects of nitrogen on grain yield, nutritional quality and processing quality of wheat for different end uses. Sci Agric Sin, 2003, 36: 640–645 (in Chinese with English abstract)



[8]荆奇, 曹卫星, 戴廷波. 小麦籽粒品质形成及其调控研究进展. 麦类作物, 1999, 19 (4): 46–50



Jing Q, Cao W W, Dai T B. The research progress on wheat grain quality formation and regulation. Tritical Crops, 1999:19(4): 46–50 (in Chinese)



[9]沈建辉, 邱泽森, 王龙俊, 纪从亮, 金建松. 稻麦棉高产群体质量的主要指标. 中国农学通报, 1998, 14(5): 43–45



Shen J H, Qiu Z S, Wang L J, Ji C L, Jin J S. Main population quality index with high grain yield in rice, wheat and cotton. Chin Agric Sci Bull, 1998, 14(5): 43–45 (in Chinese )



[10]Wilhelm W W. Dry-matter partitioning and leaf area of winter wheat grown in a long-term fallow tillage comparisons in the US Central Great Plains. Soil Tillage Res, 1998, 49: 49–56



[11]Latiri-Souki K, Nortcliff S, Lawlor D W. Nitrogen fertilizer can increase dry matter, grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions. Eur J Agron, 1998, 9: 21–34



[12]陆增根, 戴廷波, 姜东, 荆奇, 吴正贵, 周培南, 曹卫星. 氮肥运筹对弱筋小麦群体指标与产量和品质形成的影响. 作物学报, 2007, 33: 590–597



Lu Z G, Dai T B, Jiang D, Jing Q, Wu Z G, Zhou P N, Cao W X. Effects of nitrogen strategies on population quality index and grain yield and quality in weak-gluten wheat. Acta Agron Sin, 2007, 33: 590–597 (in Chinese with English abstract)



[13]李春燕, 封超年, 徐月明, 张影, 郭文善, 朱新开, 彭永欣. 弱筋小麦宁麦9号优质高产群体质量指标及形态特征. 扬州大学学报(农业与生命科学版), 2003, 24 (4): 44–48



Li C Y, Feng C N, Xu Y M, Zhang Y, Guo W S, Zhu X K, Peng Y X. Population quality indices and morphological characteristics of weak-gluten wheat variety Ningmai 9 with high-quality and grain yield. J Yangzhou Univ (Agric Life Sci Edn), 2003, 24(4): 44–48 (in Chinese with English abstract)



[14]徐振江, 张林, 任永浩, 解华云, 刘洪, 胡立勇. 种植密度与氮肥施用量对糯小麦籽粒产量和品质的影响. 华中农业大学学报, 2010, 29(1): 9–13



Xu Z J, Zhang L, Ren Y H, Xie H Y, Liu H, Hu L Y. Effects of different plant density and nitrogen application rate on grain yield and quality of waxy wheat. J Huazhong Agric Univ, 2010, 29(1): 9–13 (in Chinese with English abstract)



[15]倪静, 徐智斌, 冯波, 王涛. 糯小麦与非糯小麦籽粒品质水氮效应的差异性研究. 麦类作物学报, 2011, 31 (1): 113–119



Ni J, Xu Z B, Feng B, Wang T. Study on the difference of water and nitrogen effect in waxy and common wheat. Journal of Triticeae Crops, 2011, 31 (1): 113–119 (in Chinese with English abstract)



[16]倪静, 徐智斌, 冯波, 王涛. 不同水氮处理对糯小麦品质性状的影响. 应用与环境生物学报, 2010, 16: 770-774



Ni J, Xu Z B, Feng B, Wang T. Effects of different treatments with water and nitrogen on quality of waxy wheat. Chin J Appl Environ Biol, 2010, 16: 770-774 (in Chinese with English abstract)



[17]倪静, 徐智斌, 王涛. 糯小麦灌浆期籽粒糖类、淀粉及蛋白质的动态研究. 麦类作物学报, 2010, 30: 509–514



Ni J, Xu Z B, Wang T. Dynamic changes of grain sugar, starch, protein contents during grain filling stage in waxy wheat. J Triticeae Crops, 2010, 30: 509–514 (in Chinese with English abstract)



[18]朱新开, 郭文善, 何建华, 封超年, 袁秋勇, 吴福龙. 淮南麦区超高产小麦产量形成特点及其生理特性分析. 麦类作物, 1998, 18(6): 40–44



Zhu X K, Guo W S, He J H, Feng C N, Yuan Q Y, Wu F L. Characteristics of grain yield and quality of super high yield of wheat and their physiological bases in south Huai River wheat region. Tritical Crops, 1998, 18(6): 40–44 (in Chinese)



[19]封超年, 朱新开, 王龙俊, 杨力, 王甫同, 何建华. 小麦茎蘖成穗率与产量关系及其调控. 江苏农业研究, 1999, 20(3): 1–7



Feng C N, Zhu X K, Wang L J, Yang L, Wang F T, He J H. Relationship of earing percentage of main stems and tillers to grain yield and its regulation in wheat. Jiangsu Agric Res, 1999, 20(3): 1–7 (in Chinese with English abstract)



[20]杜永, 王艳, 王学红, 刘辉, 杨成, 杨建昌. 稻麦两熟区超高产小麦株型特征研究. 麦类作物学报, 2008, 28: 1075–1079



Du Y, Wang Y, Wang X H, Yang C, Yang J C. Plant-type characteristics of super-high-yield wheat in rice-wheat cropping system. J Triticeae Crops, 2008, 28: 1075–1079 (in Chinese with English abstract)



[21]凌启鸿. 作物群体质量. 上海: 上海科技出版社, 2000. pp 218–225



Ling Q H. Crop Population Quality. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 218–225 (in Chinese)



[22]朱新开, 郭文善, 范琦, 封超年, 彭永欣. 小麦不同产量群体干物质积累指标差异研究. 天津农学院学报, 2004, 11 (3): 10–14



Zhu X K, Guo W S, Fan Q, Feng C N, Peng Y X. Differences of dry matter accumulation among populations with different grain yield in wheat. J Tianjin Agric Coll, 2004, 11(3): 10–14 (in Chinese with English abstract)



[23]丁锦峰. 稻茬小麦超高产群体形成机理与调控. 扬州大学博士学位论文, 江苏扬州, 2013



Ding J F. Formation Mechanism and Regulation of Super-High-Yielding Population in Wheat Following Rice. PhD Dissertation of Yangzhou University, Yangzhou, China, 2013 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!