欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (10): 1591-1602.doi: 10.3724/SP.J.1006.2015.01591

• 研究简报 • 上一篇    下一篇

低氮密植栽培对超级稻产量和氮素利用率的影响

谢小兵1,周雪峰1,蒋鹏2,陈佳娜1,张瑞春1,伍丹丹1,曹放波1,单双吕1,黄敏1,邹应斌1,*   

  1. 1湖南农业大学农学院,湖南长沙 410128;2四川省农业科学院水稻高粱研究所,四川德阳 618000
  • 收稿日期:2015-03-08 修回日期:2015-06-01 出版日期:2015-10-12 网络出版日期:2015-06-05
  • 通讯作者: 邹应斌, E-mail: ybzou123@126.com; Tel: 0731-84618758
  • 基金资助:

    本研究由国家现代农业产业技术体系建设水稻栽培与土壤岗位科学家项目(2011–2015)资助。

Effect of Low Nitrogen Rate Combined with High Plant Density on Grain Yield and Nitrogen Use Efficiency in Super Rice

XIE Xiao-Bing1,ZHOU Xue-Feng1,JIANG Peng2,CHEN Jia-Na1,ZHANG Rui-Chun1,WU Dan-Dan1,CAO Fang-Bo1,SHAN Shuang-Lü1,HUANG Min1,ZOU Ying-Bin1,*   

  1. 1Agronomy College of Hunan Agricultural University, Changsha 410128, China; 2 Institute of Rice and Sorghum, Sichuan Academy of Agricultural Sciences, Deyang 618000, China
  • Received:2015-03-08 Revised:2015-06-01 Published:2015-10-12 Published online:2015-06-05
  • Contact: 邹应斌, E-mail: ybzou123@126.com; Tel: 0731-84618758

摘要:

为了研究低氮密植栽培对水稻分蘖发生及成穗率、干物质积累及其转化、氮素利用率和产量的影响,20122013年以超级稻Y两优1号为材料,在湖南长沙和海南澄迈进行了施氮量(75150225 kg N hm-2)与栽插密度(68402719 m-2),每穴苗数(单、双、三本 -1)与栽插密度(40271914 m-2)的大田栽培试验。结果表明,在基本苗数相同或相近的条件下,减苗增密在齐穗期和成熟期的干物质量及产量分别比增苗减密高10.5%5.2%2.9%,有效穗数对产量的贡献最大,达到显著水平;在低氮密植条件下,有效分蘖期缩短6 d左右,分蘖成穗率、表观转化率、氮肥偏生产力和氮素籽粒生产效率分别提高10.9%21.0%150.6%19.6%。在施氮量为75 kg N hm-2的密植(40~68 m-2)条件下,齐穗期和成熟期的干物质量及长沙点产量分别比中、高氮(150~225 kg N hm-2)常规密度(19~27 m-2)3.2%7.5%1.2%,但差异不显著,而澄迈点产量在2012年和2013年分别比之低5.2%和高9.1%,且差异均达显著水平。在施氮量为150 kg N hm-2的密植条件下,成熟期干物质量比高氮常规密度低1.7%,但齐穗期干物质量和产量比高氮常规密度高10.3%3.3%。因此,超级稻采用低氮密植栽培,在100~150 kg N hm-240 m-2条件下提早了够苗期,增加了有效穗数,提高了分蘖成穗率和结实率,加之齐穗期适宜的干物质积累和较高的表观转化率,有利于高产的形成和氮肥利用率的提高。

关键词: 超级稻, 低氮密植栽培, 产量, 干物质, 氮素利用率

Abstract:

In order to study the impacts of low nitrogen rate combined with high plant density on tillering, earbearing tiller percentage, dry matter accumulation, apparent transformation rate, N-use efficiency and grain yield, field experiments with three nitrogen rates (75, 150, and 225 kg N ha-1) and four plant densities (68, 40, 27, and 19 hill m-2) as well as with three levels of number of seedlings per hill (1, 2, and 3 seedling(s) hill-1) and four plant densities (40, 27, 19, and 14 hill m-2) were conducted using super rice cultivar Y-liangyou 1 at Changsha, Hunan Province and Chengmai, Hainan Province in 2012–2013. The results showed that when  seedlings per unit area were the same or approximate in combination with reducing seedlings per hill and increasing density (RSID), the dry matter accumulated 10.5% and 5.2% more than those with increasing seedlings per hill and reducing density (ISRD) at heading and maturity, respectively. RSID also produced 2.9% higher grain yield than ISRD. Panicles m-2 had the highest and significant contribution to grain yield in RSID. Productive tillering stage was shorter by six days, and earbearing tiller percentage, apparent transformation rate (ATR), partial factor productivity of applied nitrogen (PEP) and internal utilization efficiency of nitrogen (IE) were respectively higher by 10.9%, 21.0%, 150.6%, and 19.6% under low nitrogen rate (75150 kg N ha-1) combined with high plant density (4068 hills m-2) than under higher nitrogen rate (225 kg N ha-1) combined with low plant density (1927 hills m-2). The combination of applying 75 kg N ha-1 and transplanting 40–68 hills m-2 produced 3.2% and 7.5% biomass less than those of applying 150–225 kg N ha-1 and transplanting 19–27 hills m-2 at heading and maturity, respectively, but the differences were not significant. Meanwhile, the former combination decreased 1.2% and 5.2% grain yield at Changsha in two years and at Chengmai in 2012, respectively, while increased 9.1% at Chengmai in 2013, and the differences were significant at Chengmai. However, the combination of applying 150 kg N ha-1 and transplanting 40–68 hills m-2 produced 10.3% biomass and 3.3% grain yield more than that of applying 225 kg N ha-1 and transplanting 19–27 hills m-2, except for biomass decreased 1.7% at maturity. Therefore, the adoption of low nitrogen rate (100150 kg N ha-1) combined with high planting density (40 hills m-2) would improve both grain yield and N-use efficiency for super rice due to reaching the projected tillers earlier, increasing panicles, improving earbearing tiller percentage and seed setting rate, and having suitable biomass and higher ATR at heading stage.

Key words: Super rice, Cultivation with low nitrogen rate and high planting density, Grain yield, Dry matter, Nitrogen use efficiency

[1]章秀福, 王丹英, 方福平, 曾衍坤, 廖西元. 中国粮食安全和水稻生产. 农业现代化研究, 2005, 26(2): 85–88



Zhang X F, Wang D Y, Fang F P, Zeng Y K, Liao X Y. Food safety and rice production in China. Research of Agricultural Modernization, 2005, 26(2): 85–88 (in Chinese with English abstract)



[2]邹应斌. 长江流域双季稻栽培技术发展. 中国农业科学, 2011, 44: 254–262



Zou Y B. Development of cultivation technology for double cropping rice along the Changjiang River Valley. Sci Agric Sin, 2011, 44: 254–262 (in Chinese with English abstract)



[3]袁隆平. 选育超高产杂交水稻的进一步设想. 杂交水稻, 2012, 27(6): 1–2



Yuan L P. Conceiving of breeding further super-high-yield hybrid rice. Hybrid Rice, 2012, 27(6): 1–2 (in Chinese with English abstract)



[4]李建武, 张玉烛, 吴俊, 舒友林, 周萍, 邓启云. 超高产水稻新组合Y两优900百亩方15.40 t/hm2高产栽培技术研究. 中国稻米, 2014, 26(6): 1–4



Li J W, Zhang Y Z, Wu J, Shu Y L, Zhou P, Deng Q Y. High-yielding cultural techniques of super hybrid rice YLY900 yielded 15.40 t/hm2 on a 6.84 hm2 scale. China Rice, 2014, 26(6): 1–4 (in Chinese with English abstract)



[5]马均, 陶诗顺. 杂交中稻超多蘖壮秧超稀高产栽培技术的研究. 中国农业科学, 2002, 35(1): 42–48



Ma J, Tao S S. Study on the practice and high-yielding mechanism of super-sparse-cultivation associated with maximum-tiller seedling of hybrid rice. Sci Agric Sin, 2002, 35(1): 42–48 (in Chinese with English abstract)



[6]邹应斌, 周上游, 唐起源. 中国超级杂交水稻超高产栽培研究的现状与展望. 中国农业科技导报, 2003, 5(1): 31–35



Zou Y B, Zhou S Y, Tang Q Y. Status and outlook of high yielding cultivation researches on China super hybrid rice. Rev China Agric Sci & Technol, 2003, 5(1): 31–35 (in Chinese with English abstract)



[7]朱德峰, 林贤青, 曹卫星. 超高产水稻品种的根系分布特点. 南京农业大学学报, 2000, 23(4): 5–8



Zhu D F, Lin X Q, Cao W X. Characteristics of root distribution of super high-yielding rice varieties. J Nanjing Agric Univ, 2000, 23(4): 5–8 (in Chinese with English abstract)



[8]袁小乐, 潘晓华, 石庆华, 吴建富, 漆映雪. 超级早、晚稻的养分吸收和根系分布特性研究. 植物营养与肥料学报, 2010, 16: 27–32



Yuan X L, Pan X H, Shi Q H, Wu J F, Qi Y X. Characteristics of nutrient uptake and root system distribution in super early and super late rice. Plant Nutr Fert Sci, 2010, 16: 27–32 (in Chinese with English abstract)



[9]杨惠杰, 李义珍, 杨仁崔, 姜照伟, 郑景生. 超高产水稻的干物质生产特性研究. 中国水稻科学, 2001, 15(4): 26–31



Yang H J, Li Y Z, Yang R C, Jiang Z W, Zheng J S. Dry matter production characteristics of super high yielding rice. Chin J Rice Sci, 2001, 15(4): 26–31 (in Chinese with English abstract)



[10]吴文革, 张洪程, 陈烨, 李杰, 钱银飞, 吴桂成, 翟超群. 超级中籼杂交水稻氮素积累利用特性与物质生产. 作物学报, 2008, 34: 1060–1068



Wu W G, Zhang H C, Chen Y, Li J, Qian Y F, Wu G C, Zhai C Q. Dry-matter accumulation and nitrogen absorption and utilization in middle-season indica super hybrid rice. Acta Agron Sin, 2008, 34: 1060–1068 (in Chinese with English abstract)



[11]纪洪亭, 冯跃华, 何腾兵, 李云, 武彪, 王小艳. 两个超级杂交水稻品种物质生产的特性. 作物学报, 2013, 39: 2238–2246



Ji H T, Feng Y H, He T B, Li Y, Wu B, Wang X Y. Dynamic characteristics of matter population in two super hybrid rice cultivars. Acta Agron Sin, 2013, 39: 2238–2246 (in Chinese with English abstract)



[12]Huang M, Yang C L, Ji Q M, Jiang L G, Tan J L b, Li Y Q. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China. Field Crops Res, 2013, 149: 187–192



[13]朱德峰, 林贤青, 陈苇, 孙永飞, 卢婉芳, 段彬伍, 张玉屏. 超级稻协优9308营养特性与施肥技术. 中国稻米, 2002, (2): 18–19



Zhu D F, Lin X Q, Chen W, Sun Y F, Lu W F, Duan B W, Zhang Y P. The nutritional characteristics and technique of fertilization in super rice Xieyou 9308. China Rice, 2002, (2): 18–19 (in Chinese with English abstract)



[14]Huang J L, He F, Cui K H, Buresh Roland J, Xu B, Gong W H, Peng S B. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res, 2008, 105: 70–80



[15]Zhang Y B, Tang Q Y, Zou Y B, Li D Q, Qin J Q, Yang S H, Chen L J, Xia B, Peng S B. Yield potential and radiation use efficiency of ‘super’ hybrid rice grown under subtropical condition. Field Crops Res, 2009, 114: 91–98



[16]彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Buresh R, Witt C. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095–1103



Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 35: 1095–1103 (in Chinese with English abstract)



[17]张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915–924



Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915–924 (in Chinese with English abstract)



[18]张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 15: 3161–3171



Zhang W F, Ma L, Huang G Q, Wu L, Chen X P, Zhang F S. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Sci Agric Sin, 2013, 15: 3161–3171 (in Chinese with English abstract)



[19]马国辉, 龙继锐, 戴清明, 周静. 超级杂交中稻Y两优1号最佳缓释氮肥用量与密度配置研究. 杂交水稻, 2008, 23(6): 73–77



Ma G H, Long J R, Dai Q M, Zhou J. Studies on the optimized allocation of controlled-release nitrogen fertilizer application and planting density for medium super hybrid rice combination Yliangyou 1. Hybrid Rice, 2008, 23(6): 73–77 (in Chinese with English abstract)



[20]周江明, 赵琳, 董越勇, 徐进, 边武英, 毛杨仓, 章秀福. 氮肥和栽植密度对水稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2010, 16(2): 274–281



Zhou J M, Zhao L, Dong Y Y, Xu J, Bian W Y, Mao Y C, Zhang X F. Nitrogen and transplanting density interactions on the rice yield and N use rate. Plant Nutr Fert Sci, 2010, 16(2): 274–281 (in Chinese with English abstract)



[21]樊红柱, 曾祥忠, 张冀, 吕世华. 移栽密度与供氮水平对水稻产量、氮素利用影响. 西南农业学报, 2010, 23: 1137–1141



Fan H Z, Zeng X Z, Zhang J, Lü S H. Effects of transplanting density and nitrogen management on rice grain and nitrogen utilization efficiency. Southwest China J Agric Sci, 2010, 23: 1137–1141 (in Chinese with English abstract)



[22]陈海飞, 冯洋, 蔡红梅, 徐芳森, 周卫, 刘芳, 庞再明, 李登荣. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响. 植物营养与肥料学报, 2014, 20: 1319–1328



Chen H F, Feng Y, Cai H M, Xu F S, Zhou W, Liu F, Pang Z M, Li D R. Effect of the interaction of nitrogen and transplanting density on the rice population structure and grain yield in low-yield paddy fields. Plant Nutr Fert Sci, 2014, 20: 1319–1328 (in Chinese with English abstract)



[23]陆秀明, 黄庆, 刘怀珍, 张彬, 李惠芬, 邹积祥. 机插超级稻在不同施肥水平和不同插植密度下的生育特性及产量表现. 中国农学通报, 2014, 30(21): 152–157



Liu X M, Huang Q, Liu H Z, Zhang B, Li H F, Zou J X. The performance of yield and growth characteristics in different fertilizer levels and different transplanting densities of super mechanical transplanting rice. Chin Agric Sci Bull, 2014, 30(21): 152–157 (in Chinese with English abstract)



[24]苏祖芳, 霍中洋. 水稻合理密植研究进展. 耕作与栽培, 2006, (5): 6–9



Su F Z, Huo Z Y. Progress for research in rational close planting in rice. Gengzuo yu Zaipei, 2006, (5): 6–9 (in Chinese with English abstract)



[25]李木英, 石庆华, 王涛, 方慧铃, 潘晓华, 谭雪明. 种植密度对双季超级稻群体发育和产量的影响. 杂交水稻, 2009, 24(2): 72–77



Li M Y, Shi Q H, Wang T, Fang H L, Pan X H, Tan X M. Effects of different transplanting densities on the population development and grain yield of double cropping super rice. Hybrid Rice, 2009, 24(2): 72–77 (in Chinese with English abstract)



[26]刘学军, 张福锁. 环境养分及其在生态系统养分资源管理中的作用——以大气氮沉降为例. 干旱区研究, 2009, 26: 306–311



Liu X J, Zhang F S. Nutrient from environment and its effect in nutrient resources management of ecosystems—A case study on atmospheric nitrogen deposition. Arid Zone Res, 2009, 26: 306–311 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!