欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1701-1710.

• 耕作栽培·生理生化 • 上一篇    下一篇

乙烯利和氮肥对夏玉米氮素吸收与利用及产量的调控效应

叶德练,王玉斌,周琳,李建民,段留生,张明才*,李召虎   

  1. 植物生长调节剂教育部工程研究中心 / 中国农业大学农学与生物技术学院, 北京100193
  • 收稿日期:2015-03-02 修回日期:2015-05-04 出版日期:2015-11-12 网络出版日期:2015-06-03
  • 通讯作者: 张明才, E-mail: zmc1214@163.com, Tel: 010-62733049
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA10A206)资助。

Effect of Ethephon and Nitrogen Fertilizer on Nitrogen Uptake, Nitrogen Use Efficiency and Yield of Summer Maize

YE De-Lian,WANG Yu-Bin,ZHOU Lin,LI Jian-Min,DUAN Liu-Sheng,ZHANG Ming-Cai*,LI Zhao-Hu   

  1. Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2015-03-02 Revised:2015-05-04 Published:2015-11-12 Published online:2015-06-03
  • Contact: 张明才, E-mail: zmc1214@163.com, Tel: 010-62733049

摘要:

以玉米品种“郑单958”为材料, 在大田条件下, 研究了乙烯利(0和180 g hm–2)和氮肥水平(0、75、150和225 kg N hm–2)对夏玉米产量、氮素吸收和利用以及SPAD值的影响。结果表明, 乙烯利处理显著降低了氮吸收量和吸收效率, 但显著提高氮利用效率, 其中乙烯利处理氮农学效率比对照提高了32.7%~34.6%, 而且乙烯利处理对玉米产量及其产量构成因素没有显著影响; 随着施氮量增加, 夏玉米产量、产量构成因素和氮吸收量显著增加, 而氮吸收效率、氮利用效率、氮偏生产力和氮农学效率随之降低, 其中225 kg N hm–2处理氮吸收量比0 kg N hm–2处理提高了68.4%~91.8%, 但225 kg N hm–2和150 kg N hm–2处理之间的氮吸收量差异不显著。乙烯利和氮肥对氮吸收量、氮吸收效率和氮农学效率具有互作效应。喷施乙烯利和增施氮肥均能提高灌浆期穗位叶SPAD值, 但两者之间没有互作效应。通过相关性分析表明, 夏玉米产量与吐丝期氮吸收量、收获期氮吸收量、灌浆期穗位叶SPAD值显著正相关。

关键词: 夏玉米, 乙烯利, 氮肥利用, SPAD, 产量

Abstract:

A field experiment using maize hybrid Zhengdan 958 was conducted to study effect of ethephon (0 and 180 g ha–1) and nitrogen fertilizer (0, 75, 150, and 225 kg N ha–1) on summer maize yield and yield components, nitrogen uptake, nitrogen use and SPAD value. The results showed that ethephon significantly decreased nitrogen uptake and N uptake efficiency, whereas markedly increased N utilization efficiency. N agronomic efficiency under ethephon treatment was 32.7%–34.6% more than that under control, and ethephon had no negative effect on maize yield and yield components. With increase nitrogen fertilizer of application, maize yield, yield components and nitrogen uptake were increased, but N uptake efficiency, N utilization efficiency, N partial factor productivity and N agronomic efficiency were decreased. Nitrogen uptake under 225 kg N ha–1 treatment was 68.4%–91.8% more than that under 0 kg N ha–1. However there was no difference for nitrogen uptake between 225 kg N ha–1 and 150 kg N ha–1 treatments. Significant effect of ethephon × nitrogen was observed on nitrogen uptake, N uptake efficiency and N agronomic efficiency. Ethephon as well as higher nitrogen rate increased SPAD value of ear leaf during grain filling stage, while there was no significant interaction between ethephon and nitrogen fertilizer on SPAD value. Correlation analysis indicated that summer maize yield was significantly positively correlated with nitrogen uptake at silking stage and harvest stage and with SPAD value of ear leaf.

Key words: Summer maize, Ethephon, Nitrogen agronomic efficiency, SPAD, Yield

[1]Chen J W, Yang Z Q, Zhou P, Hai M R, Tang T X, Liang Y L, An T X. Biomass accumulation and partitioning, photosynthesis, and photosynthetic induction in ?eld-grown maize (Zea mays L.) under low- and high-nitrogen conditions. Acta Physiol Plant, 2013, 35: 95–105

[2]Uribelarrea M, Crafts-Brandner S J, Below F E. Physiological N response of field-grown maize hybrids (Zea mays L.) with divergent yield potential and grain protein concentration. Plant Soil, 2009, 316: 151–160

[3]Di Paolo E, Rinaldi M. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Res, 2008, 105: 202–210

[4]中国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2009

National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2009 (in Chinese)

[5]Ju X T, Kou C L, Zhang F S, Christie P. Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environ Pollut, 2006, 143: 117–125

[6]Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. Reducing envi-ronmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA, 2009, 106: 3041–3046

[7]Jin L, Cui H, Li B, Zhang J, Dong S, Liu P. Effects of integrated agronomic management practices on yield and nitrogen ef?ciency of summer maize in North China. Field Crops Res, 2012, 134: 30–35

[8]Lü P, Zhang J W, Jin L B, Liu W, Dong S T, Liu P. Effects of nitrogen application stage on grain yield and nitrogen use ef-ficiency of high-yield summer maize. Plant Soil Environ, 2012, 58: 211–216

[9]王宜伦, 李潮海, 谭金芳, 张许, 刘天学. 氮肥后移对超高产夏玉米产量及氮素吸收和利用的影响. 作物学报, 2011, 37: 339–347

Wang Y L, Li C H, Tan J F, Zhang X, Liu T X. Effect of postponing N application on yield, nitrogen absorption and utilization in super-high-yield summer maize. Acta Agron Sin, 2011, 37: 339–347 (in Chinese with English abstract)

[10]徐丽娜, 黄收兵, 陶洪斌, 王云奇, 祁利潘, 王璞. 不同氮肥模式对夏玉米冠层结构及部分生理和农艺性状的影响. 作物学报, 2012, 38: 301–306

Xu L N, Huang S B, Tao H B, Wang Y Q, Qi L P, Wang P. Effects of different nitrogen regimes on canopy structure and partial physiological and agronomic traits in summer maize. Acta Agron Sin, 2012, 38: 301–306 (in Chinese with English abstract)

[11]Echarte L, Rothstein S, Tollenaar M. The response of leaf photosynthesis and dry matter accumulation to nitrogen supply in an older and a newer maize hybrid. Crop Sci, 2008, 48: 656–665

[12]Pommel B, Gallais A, Coque M, Quillere I, Hirel B, Prioul J L, Floriot M. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur J Agron, 2006, 24: 203–211

[13]Vitousek P M, Naylor R, Crews T, David M B, Drinkwater L E, Holland E, Johnes P J, Katzenberger J, Martinelli L A, Matson P A, Nziguheba G, Ojima D, Palm C A, Robertson G P, Sanchez P A, Townsend A R, Zhang F S. Nutrient imbalances in agri-cultural development. Science, 2009, 324: 1519–1520

[14]Rajkumara S. Lodging in cereals: a review. Agric Rev, 2008, 29: 55–60

[15]刘明, 齐华, 张卫建, 张振平, 李雪霏, 宋振伟, 于吉琳, 吴亚男. 深松方式与施氮量对玉米茎秆解剖结构及倒伏的影响. 玉米科学, 2013, 21(1): 57–63

Liu M, Qi H, Zhang W J, Zhang Z P, Li X F, Song Z W, Yu J L, Wu Y N. Effects of deep loosening and nitrogen application on anatomical structures of stalk and lodging in maize. J Maize Sci, 2013, 21(1): 57–63 (in Chinese with English abstract)

[16]Hondroyianni E, Papakosta D K, Gagianas A A, Tsatsarelis K A. Corn stalk traits related to lodging resistance in two soils of differing salinity. Maydica, 2000, 45: 125–133

[17]Wiersma J J, Dai J, Durgan B R. Optimum timing and rate of trinexapac-ethyl to reduce lodging in spring wheat. Agron J, 2011, 103: 864–870

[18]Ramburan S, Greenfield P L. Use of ethephon and chlormequat chloride to manage plant height and lodging of irrigated barley (cv. Puma) when high rates of N-fertiliser are applied. South Afr J Plant Soil, 2007, 24: 181–187

[19]Ma B L, Leibovitch S, Maloba W E, Smith D L. Spring barley responses to nitrogen fertilizer and ethephon in regions with a short crop growing season. J Agron Crop Sci, 1992, 169: 151–160

[20]Xu X, He P, Pampolino M F, Johnston A M, Qiu S, Zhao S, Chuan L, Zhou W. Fertilizer recommendation for maize in China based on yield response and agronomic efficien-cy. Field Crops Res, 2014, 157: 27–34

[21]Cui Z, Zhang F, Mi G, Chen F, Li F, Chen X, Li J, Shi L. In-teraction between genotypic difference and nitrogen man-agement strategy in determining nitrogen use efficiency of summer maize. Plant Soil, 2009, 317: 267–276

[22]Bremener J M, Mulvaney C S. Nitrogen-area. Methods of soil analysis. Pt-2. Chemical and microbiological properties. In: Page A L, Miller R H, Keeney D R, eds. Agronomy Monograph 9, Am. Soc. Agron., Madison, WI (1982). pp 699–709

[23]Norberg O S, Mason S C, Lowry S R. Ethephon influence on harvestable yield, grain quality, and lodging of corn. Agron J, 1988, 80: 768–772

[24]Khosravi G R, Anderson I C. Growth, yield, and yield components of ethephon-treated corn. Plant Growth Regul, 1991, 10: 27–36

[25]王友华, 许海涛, 许波, 张海申, 冯晓曦. 施用氮肥对玉米产量构成及其根系生长的影响. 中国土壤与肥料, 2010, (3): 55–57  

Wang Y H, Xu H T, Xu B, Zhang H S, Feng X X. Effect of N fertilizer application yield components and root system growth of maize. China Soils Fert, 2010, (3): 55–57 (in Chinese with English abstract)

[26]Zhang Q, Zhang L, Evers J, van der Werf W, Zhang W, Duan L. Maize yield and quality in response to plant density and ap-plication of a novel plant growth regulator. Field Crops Res, 2014, 164: 82–89

[27]Xu L Z, Niu J F, Li C J, Zhang F S. Growth, nitrogen uptake and ?ow in maize plants affected by root growth restriction. J Integr Plant Biol, 2009, 51: 689–697

[28]Peng Y, Niu J, Peng Z, Zhang F, Li C. Shoot growth potential drives N uptake in maize plants and correlates with root growth in the soil. Field Crops Res, 2010, 115: 85–93

[29]Peng Y, Li X, Li C. Temporal and spatial profiling of root growth revealed novel response of maize roots under various nitrogen supplies in the field. PloS One, 2012, 7: e37726

[30]Gansel X, Munos S, Tillard P, Gojon A. Differential regulation of the NO3? and NH4+ transporter genes AtNrt2.1 and At-Amt1.1 in Arabidopsis: regulation with long-distance and local controls by N status of the plant. Plant J, 2002, 26: 143–155

[31]Wang Y Y, Hsu P K, Tsay Y F. Uptake, allocation and signaling of nitrate. Trends Plant Sci, 2012, 17: 458–467

[32]Zheng D, Han X, An Y, Guo H, Xia X, Yin W. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant Cell Environ, 2013, 36: 1328–1337

[33]张经廷, 刘云鹏, 李旭辉, 梁效贵, 周丽丽, 周顺利. 夏玉米各器官氮素积累与分配动态及其对氮肥的响应. 作物学报, 2013, 39: 506–514

Zhang J T, Liu Y P, Li X H, Liang X G, Zhou L L, Zhou S L. Dynamic responses of nitrogen accumulation and remobili-zation in summer maize organs to nitrogen fertilizer. Acta Agron Sin, 2013, 39: 506–514 (in Chinese with English ab-stract)

[34]Ciampitti I A, Vyn T J. A comprehensive study of plant den-sity consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Res, 2011, 121: 2–18

[35]Montemurro F, Maiorana M, Ferri D, Convertini G. Nitrogen indicators, uptake and utilization efficiency in a maize and barley rotation cropped at different levels and sources of N fertilization. Field Crops Res, 2006, 99: 114–124

[36]Gallais A, Coque M, Quillere I, Prioul J L, Hirel B. Modelling post-silking N-?uxes in maize using 15N-labeling-?eld ex-periments. New Phytol, 2006, 172: 696–707

[37]Gallais A, Coque M, Quillere I, Le Gouis J, Prioul J L, Hirel B. Estimating proportions of N-remobilization and of post-silking N-uptake allocated to maize kernels by 15N la-beling. Crop Sci, 2007, 47: 685–691

[38]Borrell A, Hammer G, Van Oosterom E. Stay-green: a con-sequence of the balance between supply and demand for ni-trogen during grain ?lling? Ann Appl Biol, 2001, 138: 91–95

[39]Pommel B, Gallais A, Coque M, Quillere I, Hirel B, Prioul J L, Andrieu B, Floriot M. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur J Agron, 2006, 24: 203–211

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!