欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (04): 591-599.doi: 10.3724/SP.J.1006.2016.00591

• 研究简报 • 上一篇    下一篇

共生期与种植密度对棉田套播油菜生长及产量的影响

蒯婕1,杜雪竹2,胡曼3,曾讲学1,左青松4,吴江生1,周广生1,*   

  1. 1 华中农业大学植物科学技术学院, 湖北武汉 430070; 2 湖北大学生命科学学院, 湖北武汉 430070; 3 湖北省农业厅, 湖北武汉 430070; 4扬州大学江苏省作物遗传生理重点实验室, 江苏扬州 225009
  • 收稿日期:2015-09-17 修回日期:2015-01-11 出版日期:2016-04-12 网络出版日期:2015-01-19
  • 通讯作者: 周广生, E-mail: zhougs@mail.hzau.edu.cn
  • 基金资助:

    本研究由国家科技支撑计划项目(2014BAD11B03), 国家现代农业产业技术体系建设专项(NYCYTC-00510), 国家公益性行业(农业)科研专项(201203096)和高校自主科技创新基金项目(2013PY001)资助。

Effect of Symbiosis Periods and Plant Densities on Growth and Yield of Rapeseed Intercropping Cotton

KUAI Jie1,DU Xue-Zhu2,HU Man3,ZENG Jiang-Xue1,ZUO Qing-Song4,WU Jiang-Sheng1,ZHOU Guang-Sheng1,*   

  1. 1 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; 2 College of Life Sciences, Hubei University, Wuhan 430070, China; 3 Hubei Agricultural Department, Wuhan 430070, China; 4 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
  • Received:2015-09-17 Revised:2015-01-11 Published:2016-04-12 Published online:2015-01-19
  • Contact: 周广生, E-mail: zhougs@mail.hzau.edu.cn
  • Supported by:

    This study was supported by the National Key Technology R&D Program of China (2014BAD11B03), the China Agriculture Research System (NYCYTC-00510), the Special Fund for Agro-Scientific Research in the Public Interest (201203096), and the Fundamental Research Funds for Central Universities (2013PY001).

摘要:

为探讨共生期和密度对棉田套播油菜生长和产量的影响, 设置3个共生期: 棉油共生10 d (T10)、20 d (T20)和30 d (T30)及4个种植密度 30 (D1)、45 (D2)、60 (D3)和75万株 hm–2 (D4)裂区试验。结果表明: (1)同一密度下, 延长共生期, 越冬期、蕾薹期和花期绿叶数、叶面积指数均增加, 促进了根系及地上部干物质累积, 根冠比、株高、根茎粗增加, 茎秆酸不溶木质素和总木质素含量下降, 可溶性糖、半纤维素和纤维素含量升高。油菜根倒角度虽增加, 但茎倒角度、总倒伏角度减小, 油菜单株和群体产量均增加, 以T30D2群体产量最高。(2)密度对油菜生长和产量的影响因共生期不同存在差异。相同共生期处理下, 随密度增加, 单株绿叶数减少, 根系干物质、地上部干物质累积量降低, 单株产量降低。T30条件下, 叶面积指数(LAI)随密度增加呈先增后减的趋势, 在D3密度时, LAI最大; 在T20、T10条件下, LAI则随密度增加而增加。群体产量与LAI变化趋势一致。T30、T20处理下, 茎倒角度随密度增加呈先降后增趋势, 在T10处理下, 则逐渐增加, 与茎秆纤维素含量变化趋势相反, 两试点均为T30D3田间总倒伏角度最小。(3)武穴及天门试点棉田套播油菜产量所要求的共生期及密度最优配置分别为29.8 d、48.8万株 hm–2, 29.7 d、57.6万株 hm–2; 在此配置下, 两试点油菜产量理论值分别为3243.0、3082.8 kg hm–2, 与当地棉田套播油菜常用栽培模式(共生期15 d, 密度15.0~22.5万株 hm–2, 产量约2625 kg hm–2)相比, 可实现增产23.5%、17.4%。

关键词: 油菜, 棉田套播, 共生期, 密度, 产量

Abstract:

To explore the effect of symbiotic periods and densities on the growth and yield of rapeseed intercropping cotton, a split-plot experiment with three symbiotic periods [10 d (T10), 20 d (T20), and 30 d (T30)] and four levels of densities [30×104 (D1), 45×104 (D2), 60×104 (D3), and 75×104 plants ha–1 (D4)] was designed. The results showed that: (1) Prolonging symbiotic periods was favorable for rapeseed growth in terms of the number of green leaves, LAI, root biomass, aboveground biomass, root-shoot ratio, plant height, crown diameter all increased, whereas angle of stem lodging decreased. These led to increase in yield both single plant and unit hectare. (2) The effects of plant density on rapeseed growth and yield depended on the symbiotic period. The number of green leaves, root biomass, aboveground biomass decreased with plant densities, which resulted in decreased yield per plant. At T30, the maximum LAI was observed under D3, while it was increased with plant density at T20 and T10. The population yield had the same trend with LAI. The yield reached the maximum when the symbiosis period was 30 days and the plant density at 45×104 plants ha–1,whereas the angle of stem lodging reached the minimum at T30D3. (3) Based on the regressions, for Wuxue sites, the optimum symbiotic period was 29.8 days and the optimum plant density was 48.8×104 plants ha–1 while these for Tianmen were 29.7 days and 57.6 plants ha–1. Under these arrangements, Wuxue and Tianmen could achieve the yield about 3243.0, 3082.8 kg ha–1,which were increased by 23.5%, 17.4%, respectively, when compared to the traditional arrangement (the symbiotic period was 15d, the plant density was 15.0 to 22.5×104 plants ha–1 and the average yield was about 2625 kg ha–1).

Key words: Rapeseed (Brassica napus), Cotton field, Symbiotic period, Plant density, Yield

[1] 王菊芬, 吴伯志. 间套作系统中土壤水分研究进展. 云南农业大学学报, 2009, 24: 286–291

Wang J F, Wu B Z. Advance in studies on soil moisture in intercropping system. J Yunnan Agri Univ, 2009, 24: 286–291 (in Chinese with English abstract)

[2] 逄焕成, 宋吉作, 刘光亮. 小麦玉米套种共生期的气候生态效应与小麦边际效应分析. 耕作与栽培, 1994, (4): 15–16

Pang H C, Song J Z, Liu G L. Analysis of the ecological effect of climate and the marginal effect of wheat under wheat-maize interplanting. Gengzuo Yu Zaipei, 1994, (4): 15–16 (in Chinese with English abstract)

[3] 李银水, 鲁剑巍, 邹娟, 张耀学, 王友珠. 棉田免耕套栽油菜施肥效果及肥料适宜用量研究. 中国油料作物学报, 2009, 31: 349–354

Li Y S, Lu J W, Zou J, Zhang Y X, Wang Y Z. Effect of NPK fertilization on rapeseed and optimal rate of fertilizer for interplanting rapeseed of no-tillage cotton-rapeseed rotation system. Chin J Oil Crop Sci, 2009, 31: 349–354 (in Chinese with English abstract)

[4] 雷海霞, 陈爱武, 张长生, 罗凯世, 陈新国, 夏起昕, 周广生, 吴江生, 田新初. 共生期与播种量对水稻套播油菜生长及产量的影响. 作物学报, 2011, 37: 1449−1456

Lei H X, Chen A W, Zhang C S, Luo K S, Chen X G, Xia Q X, Zhou G S, Wu J S, Tian X C. Effect of symbiosis period and seeding amount on growth and yield of rapeseed under sowing rice. Acta Agron Sin, 2011, 37: 1449−1456 (in Chinese with English abstract)

[5] 曹卫星. 作物栽培和耕作学. 北京: 科学出版社, 2011. p 150

Cao W X. Crop Cultivation and Farming System. Beijing: Science Press, 2011. p 150 (in Chinese)

[6] 黄秀芳, 孙敬东, 沙安勤, 陈俊才, 俞晓玲, 王洁. 棉田套播油菜生育特点及高产配套技术. 江苏农业科学, 2005, (5): 27–29

Huang X F, Sun J D, Sha A Q, Chen J C, Yu X L, Wang J. The growth characteristics and the high yield cultivation technology of rapeseed under-sowed in cotton field. Jiangsu Agric Sci, 2005, (5): 27–29 (in Chinese)

[7] 梅少华, 殷少华, 熊飞, 陶玉池, 梅金安, 范端阳, 夏起昕, 刘文革, 肖齐圣. 棉田套播油菜产量表现及高产栽培技术. 湖北农业科学, 2012, 51: 3682–3683

Mei S H, Yin S H, Xiong F, Tao Y C, Mei J A, Fan D Y, Xia Q X, Liu W G, Xiao Q S. Study on the yield performance of rapeseed under-sowed in cotton field and the high yield cultivation technology. Hubei Agric Sci, 2012, 51: 3682–3683 (in Chinese with English abstract)

[8] 刘后利. 实用油菜栽培学. 上海: 上海科学技术出版社, 1987. p 500

Liu H L. Practical Rapeseed cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1987. p 500 (in Chinese)

[9] Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, CO. 2008

[10] 吴安平, 殷少华, 熊飞, 阮祥金, 夏起昕, 胡海珍. “双低”优质油菜棉林套播高产栽培技术. 湖北农业科学, 2010, 49: 533–534

Wu A P, Yin S H, Xiong F, Ruan X J, Xia Q X, Hu H Z. High-yield cultivation techniques of sowing canola rapeseed in cotton fields. Hubei Agric Sci, 2010, 49: 533–534 (in Chinese with English abstract)

[11] 曾凡仕, 李凤江. 双季晚稻田套播紫云英高产栽培技术. 湖南农业科学, 2010, (3): 20–21

Zeng F S, Li F J. High-yield cultivation techniques of sowing the milk vetch in paddy fields. Hunan Agric Sci, 2010, (3): 20–21 (in Chinese)

[12] 郑伟, 肖国滨, 陈明, 李钟平, 黄天宝, 肖小军, 李亚贞, 刘小三, 张昆, 叶川. 谷林套播下不同共生期对稻田三熟制油菜生长规律和产量的影响. 中国农学通报, 2014, 30(18): 156–160

Zheng W, Xiao G B, Chen M, Li Z P, Huang T B, Xiao X J, Li Y Z, Liu X S, Zhang K, Ye C. Effect of symbiosis period on growth and yield of rapeseed under sowing rice. Chin Agric Sci Bull, 2014, 30(18): 156–160 (in Chinese)

[13] 刘巽浩, 牟正国. 中国耕作制度. 北京: 中国农业出版社, 1993. pp 151–158

Liu X H, Mou Z G. Chinese Farming System. Beijing: China Agriculture Press, 1993: 151–158 (in Chinese)

[14] 张喜娟, 李红娇, 李伟娟, 徐正进, 陈温福, 张文忠, 王嘉宇. 北方直立穗型粳稻抗倒性的研究. 中国农业科学, 2009, 42: 2305–2313

Zhang X J, Li H Q, Li W J, Xu Z J, Chen W F, Zhang W Z, Wang J Y. The lodging resistance of erect panicle japonica rice in northern China. Sci Agric Sin, 2009, 42: 2305–2313 (in Chinese with English abstract)

[15] Baker C J, Berry P M, Spink J H, Sylvester Bradley R, Griffin J M, Scott R K, Clare R W. A method for the assessment of the risk of wheat lodging. Theor Biol, 1998, 194: 587–603

[16] Sterling M, Baker C J, Berry P M, Wadec A. An experimental investigation of the lodging of wheat. Agric For Meteorol, 2003, 119: 149–165

[17] Chatterjee N, Mandai B K. Prensent trends in research on intercropping. Indian J Agric Sci, 1992, 62: 507–518

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[11] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[15] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!