欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (10): 1530-1540.doi: 10.3724/SP.J.1006.2016.01530

• 耕作栽培·生理生化 • 上一篇    下一篇

晚冬早春田间阶段性覆膜增温促进冬小麦产量提高

杜雄1,*,张维宏1,张永升1,曹彩云2,李科江2   

  1. 1河北农业大学/河北省作物生长调控重点实验室, 河北保定 071001; 2河北省农林科学院旱作农业研究所, 河北衡水 053000
  • 收稿日期:2015-10-01 修回日期:2016-06-20 出版日期:2016-10-12 网络出版日期:2016-06-27
  • 通讯作者: 杜雄, E-mail: duxiong2002@163.com
  • 基金资助:

    本研究由河北省科技支撑计划项目(14226401D), 国家科技支撑计划项目(2013BAD07B05), 国家公益性行业(农业)科研专项(201203100)和河北省青年优秀拔尖人才专项基金资助。

Artificial Warming from Late Winter to Early Spring by Phased Plastic Mulching Increases Grain Yield of Winter Wheat

DU Xiong1,*,ZHANG Wei-Hong1,ZHANG Yong-Sheng1,CAO Cai-Yun2,LI Ke-Jiang2   

  1. 1 Agricultural University of Hebei / Hebei Key Laboratory of Crop Growth Regulation, Baoding 071001, China; 2 Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, China
  • Received:2015-10-01 Revised:2016-06-20 Published:2016-10-12 Published online:2016-06-27
  • Contact: 杜雄, E-mail: duxiong2002@163.com
  • Supported by:

    This study was supported by the Key Technology R&D Program of HebeiProvince (14226401D), the National Key Technology R&D Program of China (2013BAD07B05), the National Special Fund for Agro-scientific Research in the Public Interest (201203100), and the Hebei provincial fund for outstanding young scholars.

摘要:

针对华北平原北部冬春温度变化与冬小麦生长发育所需适宜温度间的矛盾,以及由此造成的冬小麦相对低产问题,于2012—2013和2013—2014连续两个生长季,通过大田试验研究了晚冬早春搭建棚室阶段性升高田间温度对小麦产量的影响。结果表明,2月20日前后麦田塑膜覆盖每提前1周积温提高23.0~49.7℃,1月下旬至3月上旬的整个升温阶段内可增加积温167.7~176.8℃,从而小麦生长发育提前。塑膜揭除后形成的相对低温环境使后续各生育阶段持续时间延长4~10 d。与常规种植(对照)相比,最早增温处理的开花期干物质产量提高18.8%,叶面积指数提高14.7%,花后光合势增加43.6%,花后净光合速率高值持续期延长10 d以上;返青后各生育阶段的延长促进了干物质积累和向籽粒转移,有效穗数增加48~98万hm-2、单穗粒数增加3.9~4.5粒、千粒重增加2.5~5.6 g。在全生长季积温较少的2012—2013年度,最早增温处理的籽粒产量提高37.5%,在积温较多的2013-2014年度增产18.2%,并提前5 d成熟。晚冬早春农田阶段性覆膜增温是有效提高小麦籽粒产量的新型方法,提前并延长了生长发育和干物质累积的时间是改善小麦产量构成因素和获得高产的原因。

关键词: 晚冬早春, 阶段性覆膜增温, 冬小麦, 产量, 华北平原北部

Abstract:

Low temperature from late winter to early spring is a main restraint to high yield in winter wheat production in the northern part of North China Plain. We attempted to artificially increase the temperature during this period through phased plastic film mulching. A field experiment was carried out in the 2012–2013 and 2013–2014 growing seasons with several treatments differing from artificial warming period. Compared with the normal condition (control), mulching since January 25 or February 1 resulted in 167.7–176.8 °C increment of accumulated temperature from late January to early March, and mulching one week earlier contributed to higher accumulated temperature by 23.0–49.7 °C. Wheat seedlings under artificial warming showed earlier revival and growth than the control. And the subsequent growth stages were prolonged for 4–10 days because of the relative lower temperature after the plastic film was removed. The earliest warming treatment was most favorable to dry matter accumulation, translocation, and yield enhancement among all treatments. Compared with the control, the earliest warming treatment with mulching increased the dry matter weight and leaf area index at anthesis stage by 18.83% and 14.7%, respectively; as well as prolonged active photosynthetic duration by more than 10 days, and increased leaf area duration by 43.6%, spike number per hectare by 0.48–0.98 million, kernel number per spike by 3.9–4.5 kernels, and thousand-kernel weight by 2.5–5.6 g. The final yields of the earliest warming treatment were 37.5% and 18.9% higher than those of the control in the cool 2012–2013 and the warm 2013–2014 growing season, respectively, and the maturity date was five days earlier than that of control in the 2013–2014 growing season. Our results indicate that artificial warming by phased mulching with plastic film is an applicable technique in wheat production in North China Plain.

Key words: Late-winter and early-springv, Artificial warming by phased plastic mulching, Winter wheat, Yield, Northern part of the North China Plain

[1]柳艳香, 吴统文, 郭裕福, 颜京辉.华北地区未来30年气候变化趋势模拟研究.气象学报, 2007, 65(1): 45–51
Liu Y X, Wu T W, Guo Y F, Yan J H. Prediction research of climate change treads over North China in the future 30 years. Acta Meteorol Sin, 2007, 65(1): 45–51 (in Chinese with English abstract)
[2]谭凯炎, 房世波, 任三学. 增温对华北冬小麦生产影响的试验研究. 气象学报, 2012, 70: 902–908
Tan K Y, Fang S B, Ren S X. Experiment study of winter wheat growth and yield response to climate warming. Acta Meteorol Sin, 2012, 70: 902–908 (in Chinese with English abstract)
[3]李克南, 杨晓光, 刘志娟, 王文峰, 陈阜. 全球气候变化对中国种植制度可能影响分析: III. 中国北方地区气候资源变化特征及其对种植制度界限的可能影响. 中国农业科学, 2010, 43: 2088–2097
Li K N, Yang X G, Liu Z J, Wang W F, Chen F. Analysis of the potential influence of global climate change on cropping systems in China: III. The change characteristics of climatic resources in northern China and its potential influence on cropping systems. Sci Agric Sin, 2010, 43: 2088–2097 (in Chinese with English abstract)
[4]Rosenzweig C, Tubiello F N. Effects of changes in minimum and maximum temperature on wheat yields in the central USA simulation study. Agric For Meteorol, 1996, 80: 215–230
[5]Batts G R, Morison J K L, Ellis R H. Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Eur J Agron,1997, 7: 43–52
[6]Yuan Z J, Shen Y J. Estimation of agricultural water consumption from meteorological and yield data: a case study of Hebei, North China. PLoS One, 2013, 8: e58685
[7]高霞, 尤凤春, 许耀辉. 河北省水资源状况的降水条件分析. 干旱气象, 2008, 26(1): 47–51
Gao X, You F C, Xu Y H. Precipitation condition of water resource in Hebei province. Arid Meteorol, 2008, 26(1): 47–51 (in Chinese with English abstract)
[8]孙亚辉, 李瑞奇, 党红凯, 张馨文, 李慧玲, 李雁鸣. 河北省超高产冬小麦群体和个体生育特性及产量结构特点. 河北农业大学学报, 2007, 30(3): 1–8
Sun Y H Li R Q, Dang H K, Zhang X W, Li H L, Li Y M. Population and individual characteristics of growth and development and yield components of super-high-yielding winter wheat in Hebei Province. J Agric Univ Hebei, 2007, 30(3): 1–8 (in Chinese with English abstract)
[9]卞晓波, 陈丹丹, 王强盛, 王绍华. 花后开放式增温对小麦产量及品质的影响. 中国农业科学, 2012, 45: 1489–1498
Bian X B, Chen D D, Wang Q S, Wang S H. Effects of different day and night temperature enhancements on wheat grain yield and quality after anthesis under free air controlled condition. Sci Agric Sin, 2012, 45: 1489–1498 (in Chinese with English abstract)
[10]房世波, 谭凯炎, 任三学. 夜间增温对冬小麦生长和产量影响的实验研究. 中国农业科学, 2010, 43: 3251–3258
Fang S B, Tan K Y, Ren S X. Winter wheat yield decline with spring higher night temperature by controlled experiments. Sci Agric Sin, 2010, 43: 3251–3258 (in Chinese with English abstract)
[11]张建平, 赵艳霞, 王春乙, 何勇. 气候变化对我国华北地区冬小麦发育和产量的影响. 应用生态学报, 2006, 17: 1179–1184
Zhang J P, Zhao Y X, Wang C Y, He Y. Effects of climate change on winter wheat growth and yield in North China. Chin J Appl Ecol, 2006, 17: 1179–1184 (in Chinese with English abstract)
[12]Sadras V O, Monzon J P. Modelled wheat phenology captures rising temperature trends: shortened time to flowering and maturity in Australia and Argentina. Field Crop Res, 2006, 99: 136–146
[13]郭天财, 王晨阳, 朱云集, 王化岑, 李九星, 周继泽. 后期高温对冬小麦根系及地上部衰老的影响. 作物学报, 1998, 24: 957–962
Guo T C, Wang C Y, Zhu Y J, Wang H C, Li J X, Zhou J Z. Effects of high temperature on senescence of root and top-partial of wheat plant in the later stage. Acta Agron Sin, 1998, 24: 957–962 (in Chinese with English abstract)
[14] Jenner C F. Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars: II. Carry-over effects. Aust J Plant Physiol, 1991, 18: 179–190
[15]Stone P J, Nicolas M E. Wheat cultivars vary widely in their response of grain yield and quality of short period of post-anthesis heat stress. Aust J Plant Physiol, 1994, 21: 887–900
[16]]Fitter A H, Fitter R S R, Harris I T B. Relationships between first flowering date and temperature in the flora of a locality in central England. Funct Ecol, 1995, 9: 55–60
[17]耿婷, 陈摇金, 张卫建, 陈长青. 全天增温对不同年代冬小麦品种生长发育及产量的影响. 应用生态学报, 2014, 25: 1357–1365
Geng T, Chen Y J, Zhang W J, Chen C Q. Effects of all day warming on growth, development and yield of winter wheat cultivars bred in different periods. Chin J Appl Ecol, 2014, 25: 1357–1365 (in Chinese with English abstract)
[18]张彬, 郑建初, 田云录, 董文军, 陈金, 杨飞, 张卫建. 农田开放式夜间增温系统的设计及其在稻麦上的试验效果. 作物学报, 2010, 36: 620–628
Zhang B, Zheng J C, Tian Y L, Dong W J, Chen J, Yang F, Zhang W J. System design of free air temperature increased (FATI) for field nighttime warming experiment and its effects on rice-wheat cropping system. Acta Agron Sin, 2010, 36: 620–628 (in Chinese with English abstract)
[19]田云录, 陈摇金, 邓艾兴, 郑建初, 张卫建. 开放式增温下非对称性增温对冬小麦生长特征及产量构成的影响. 应用生态学报, 2011, 22: 681–686
Tian Y L, Chen Y J, Deng A X, Zheng J C, Zhang W J. Effects of asymmetric warming on the growth characteristics and yield components of winter wheat under free air temperature increased. Chin J Appl Ecol, 2011, 22: 681–686 (in Chinese with English abstract)
[20]姚仪敏, 王小燕, 陈建珍, 闫浩亮, 穆麒麟, 刘盼春, 田小海. 灌浆期增温对小麦籽粒结实及品质的双向效应及与施氮量的关系. 麦类作物学报, 2015, 35: 860–866
Yao Y M, Wang X Y, Chen J Z, Yan H L, Mu Q L, Liu P C, Tian X H. Pros and cons effects of warming on wheat grain yield and quality during grain filling. J Triticeae Crops, 2015, 35: 860–866 (in Chinese with English abstract)
[21]Farooq M, Bramley H, Palta J A. Heat stress in wheat during reproductive and grain filling phases. Crit Rev Plant Sci, 2011, 30: 491–507
[22]Xiong W, Lin E D, Ju H. Climate change and critical thresholds in China’s food security. Climatic Change, 2007, 81: 205–221
[23]高丽娜, 陈素英, 张喜英, 孙宏勇, 王彦梅, 邵立威. 华北平原冬小麦麦田覆盖对土壤温度和生育进程的影响. 干旱地区农业研究, 2009, 27(1): 107–113
Gao L N, Chen S Y, Zhang X Y, Sun H Y, Wang Y M, Shao L W. Effect of mulching on soil temperature and crop growth of winter wheat in plain of North China. Agric Res Arid Areas, 2009, 27(1): 107–113 (in Chinese with English abstract)
[24]何立谦, 张维宏, 张永升, 曹彩云, 李科江, 杜雄. 土下微膜覆盖与灌水管理对冬小麦水分利用与物质生产效果的影响. 作物学报, 2014, 40: 1980–1989
He L Q, Zhang W H, Zhang Y S, Cao C Y, Li K J, Du X. Water utilization and matter production in winter wheat under soil-coated ultrathin plastic-film mulching and irrigation management. Acta Agron Sin, 2014, 40: 1980–1989 (in Chinese with English abstract)
[25]陈伦寿. 报酬递减率与合理施肥. 北京农业大学学报. 1982, 8(1): 69–76
Chen L S. The rational application of fertilizer and the law of diminishing return. Acta Agric Univ Pekinensis, 1982, 8(1): 69–76 (in Chinese with English abstract)
[26]褚清河, 强彦珍. 经济学与肥料学中报酬递减律的同一性及其问题. 山西农业科学, 2011, 39(1): 33–37
Chu Q H, Qiang Y Z. The identity and problem of the diminishing rate of return in the economics and the fertilizer sciences. J Shanxi Agric Sci, 2011, 39(1): 33–37 (in Chinese with English abstract)
[27]张法全, 王小燕, 于振文, 王西芝, 白洪立. 公顷产10000 kg小麦氮素和干物质积累与分配特性. 作物学报, 2009, 35: 1086–1096
Zhang F Q, Wang X Y, Yu Z W, Wang X Z, Bai H L. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare. Acta Agron Sin, 2009, 35: 1086–1096 (in Chinese with English abstract)
[28]同延安, 赵营, 赵护兵, 樊红柱. 施氮量对冬小麦氮素吸收、转运及产量的影响. 植物营养与肥料学报, 2007, 13: 64–69
Tong Y A, Zhao Y, Zhao H B, Fan H Z. Effect of N rates on N uptake, transformation and the yield of winter wheat. Plant Nutr Fert, 2007, 13: 64–69 (in Chinese with English abstract)
[29]Zhang X Y, Wang Y Z, Sun H Y, Chen S Y, Shao L W. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrig Sci, 2013, 31: 1103-1112
[30]张宁, 杜雄, 江东岭, 崔彦宏. 播期对夏玉米生长发育及产量影响的研究. 河北农业大学学报, 2009, 32(5): 7–11
Zhang N, Du X, Jiang D L, Cui Y H. Effect of sowing date on growth and yield of summer corn (Zea mays L.). J Agric Univ Hebei, 2009, 32(5): 7–11 (in Chinese with English abstract)
[31]Sun H Y, Zhang X Y, Chen S Y, Pei D, Liu C M. Effects of harvest and sowing time on the performance of the rotation of winter wheat–summer maize in the North China Plain. Ind Crop Prod, 2007, 25: 239–247
[32]刘月娥, 谢瑞芝, 张厚宝, 李少昆, 高世菊. 不同生态区玉米适时晚收增产效果. 中国农业科学, 2010, 43: 2820–2828
Liu Y E, Xie R Z, Zhang H B, Li S K, Gao S J. Study on increasing rate of maize yield after putting off harvest time in different ecoregions. Sci Agric Sin, 2010, 43: 2820–2828 (in Chinese with English abstract)
[33]李向岭, 李从锋, 侯玉虹, 侯海鹏, 葛均筑, 赵明. 不同播期夏玉米产量性能动态指标及其生态效应. 中国农业科学 2012, 45: 1074-1083
Li X L, Li C F, Hou Y H, Hou H P, Ge J Z, Zhao M. Dynamic characteristics of summer maize yield performance in different planting dates and its effect of ecological factors. Sci Agric Sin, 2012, 45: 1074–1083 (in Chinese with English abstract)
[34]李向东, 张德奇, 王汉芳, 邵运辉, 方保停, 吕风荣, 岳俊芹, 马富举. 越冬前增温对小麦生长发育和产量的影响. 应用生态学报, 2015, 26: 839–846
Li X D, Zhang D Q, Wang H F, Shao Y H, Fang B T, Lü F R, Yue J Q, Ma F J. Impact of temperature increment before the over-wintering period on growth and development and grain yield of winter wheat. Chin J Appl Ecol, 2015, 26: 839–846 (in Chinese with English abstract)
[35]张黎萍, 荆奇, 戴廷波, 姜东, 曹卫星. 温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响. 应用生态学报, 2008, 19: 311–316
Zhang L P, Jing Q, Dai T B, Jiang D, Cao W X. Effects of temperature and illumination on flag leaf photosynthetic characteristics and senescence of wheat cultivars with different grain quality. Chin J Appl Ecol, 2008, 19: 311–316 (in Chinese with English abstract)
[36]高小宽, 马光, 吕亚慈. 浅析衡水市雾霾天气成因及治理措施. 农村经济与科技, 2014, 25(10): 21–22
Gao X K, Ma G, Lü Y C. Causes and countermeasures of haze weather in Hengshui Zone. Rural Econ Sci-technol, 2014, 25(10): 21–22 (in Chinese)
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!