欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (12): 1805-1816.doi: 10.3724/SP.J.1006.2016.01805

• 耕作栽培·生理生化 • 上一篇    下一篇

在植株不同水平距离处垂直断根对夏玉米产量形成和籽粒库容特性的影响

徐振和1,**,梁明磊1,2,**,路笃旭1,刘梅1,刘鹏1,*,董树亭1,张吉旺1,赵斌1,李耕1,杨金胜3   

  1. 1作物生物学国家重点实验室 / 山东农业大学农学院, 山东泰安 271018; 2聊城市农业委员会, 山东聊城 252000;3 山东登海种业股份有限公司 / 山东省玉米育种与栽培技术企业重点实验室, 山东莱州 261448
  • 收稿日期:2016-04-15 修回日期:2016-06-20 出版日期:2016-12-12 网络出版日期:2016-07-28
  • 基金资助:

    本研究由国家自然科学基金项目(31371576,31401339), 国家“十二五”科技支撑计划(2013BAD07B06-2), 国家公益性行业(农业)科研专项(201203100,201203096), 山东省现代农业产业技术体系(SDAIT-02-08), 国家现代农业产业技术体系建设专项(CARS-02-20),山东省农业重大应用技术创新课题和山东省玉米育种与栽培技术企业重点实验室资助。

Effect of Cutting Roots Vertically at a Place with Different Horizontal Distance from Plant on Yield and Grain Storage Capacity of Summer Maize

XU Zhen-He1,**,LIANG Ming-Lei1,2,**,LU Du-Xu1,LIU Mei1,LIU Peng1,*,DONG Shu-Ting1, ZHANG Ji-Wang1,ZHAO Bin1,LI Geng1   

  1. 1 State Key Laboratory of Crop Biology / Agronomy College of Shandong Agricultural University, Tai’an 271018, China; 2 Liaocheng Agriculture Committee, Liaocheng 25200, China ;3 Shandong Denghai Seeds Co. Ltd. / Shandong Provincial Key Laboratory of Corn Breeding and Cultivation Technology, Laizhou 261448, China
  • Received:2016-04-15 Revised:2016-06-20 Published:2016-12-12 Published online:2016-07-28
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31371576, 31401339), National Key Technology Support Program of China (2013BAD07B06–2), the Special Fund for Agro-scientific Research in the Public Interest (201103100, 201203096), Shandong Modern Agricultural Technology & Industry System (SDAIT-02-08), the China Agriculture Research System (CARS-02-20), Agriculture Technology Innovation Project of Shandong Province, and Shandong Provincial Key Laboratory of Corn Breeding and Cultivation Technology.

摘要:

 

以高产夏玉米品种郑单958 (浅根型,ZD)和登海661 (深根型,DH)为材料,于大喇叭口期(V12)分别在距离植株两侧10 cm、20 cm、30 cm处垂直断根,断根深度60 cm,以不断根处理为对照,共设计8个处理(ZDCK、ZD10、ZD20、ZD30;DHCK、DH10、DH20、DH30),研究了玉米植株两侧不同水平距离处根系对夏玉米籽粒灌浆及产量形成的调控作用。结果表明,ZD10、ZD20与DH10、DH20分别切断24.81%、11.69%与16.82%、7.52%的根系;ZD30与DH30各指标与CK间无显著差异,ZD10、ZD20产量分别下降13.09%、9.10%,显著大于DH10、DH20的产量降幅(9.81%、4.64%),其产量下降原因主要是断根后两品种的穗粒数与千粒重降低,其中ZD20、ZD10穗粒数与千粒重较ZDCK分别下降4.90%、5.60%和4.37%、7.88%,DH20、DH10穗粒数与千粒重较DHCK分别下降3.38%、5.15%和1.15%、4.97%;断根后两品种实际库容与结实率均有不同程度下降;到达最大灌浆速率时的天数(Tmax)、灌浆速率最大时的生长量(Wmax)、最大灌浆速率(Gmax)、籽粒灌浆活跃期(P)、灌浆速率也均下降,断根处理对浅根型品种郑单958的影响更为显著。

关键词: 夏玉米, 根系, 根系构型, 灌浆, 产量

Abstract:

A field experiment was conducted using two summer maize cultivars, Zhengdan 958 (ZD, shallow root type) and Denghai 661 (DH, deep root type). At the V12 stage, we cut roots vertically at different horizontal distance of 10 cm, 20 cm and 30 cm from maize plant in 60 cm soil depth, with no roots cutting as contrast check, which were referred to as ZDCK, ZD10, ZD20, ZD30 and DHCK, DH10, DH20, DH30 respectively. Roots of ZD10 and ZD20 decreased 24.81%, 11.69% and those of DH10, DH20 decreased 16.82%, 7.52% after cutting roots, respectively. Grain yield of summer maize decreased significantly after cutting roots, with a decrease of 13.09%, 9.10% for ZD10 and ZD20, respectively, and 9.81%, 4.64% for DH10 and DH20. After cutting roots, grains per ear and 1000-grain weight of ZD20, ZD10, DH20, and DH10 declined 4.90%, 5.60%, 4.37%, 7.88%, and 3.38%, 5.15%, 1.15%, 4.97%, respectively, which is the important factors resulting in lower grain yield. Grain sink and setting rate were also decreased to a different extent after cutting roots. Cutting roots decreased days to the maximum grain filling rate (Tmax), weight at the time up to the maximum grain filling rate (Wmax), maximum grain filling rate (Gmax), the phase of active grain filling, and average grain filling rate of two cultivars, with more decrease in Zhengdan 958 than in Denghai661.

Key words: Summer maize, Root, Root system architecture, Grain filling, Yield

[1]王玉贞, 李维岳, 尹枝瑞. 玉米根系与产量关系的研究进展. 吉林农业科学, 1999, 24(4): 6–8
Wang Y Z, Li W Y, Yin Z R. The research progress of corn root system and production relations. Jilin Agric Sci, 1999, 24(4): 6–8 (in Chinese with English abstract)
[2]Lynch J P. Root architecture and pant productivity. Plant Physiol, 1995, 109(1): 7–13
[3]Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot, 2013, 112(2): 347–357
[4]Zhu J M, Kaeppler S M, Lynch J P. Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol, 2005, 32(8): 749–762
[5]米国华, 陈范骏, 吴秋平, 赖宁薇, 袁力行, 张福锁. 玉米高效吸收氮素的理想根构型. 中国科学: 生命科学, 2010, 40: 1112–1116
Mi G H, Chen F J, Wu Q P, Lai N W, Yuan L X, Zhang F S. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci China Life Sci, 2010, 40: 1112–1116 (in Chinese with English abstract)
[6]宋日, 吴春胜, 王成己, 郭继勋. 玉米深层根系对地上部营养生长和产量的影响. 玉米科学, 2002, 10(3): 63–66
Song R, Wu C S, Wang C J, Gu J X. Effects of deep root system on above-ground vegetative growth and yield in maize. J Maize Sci, 2002, 10(3): 63–66 (in Chinese with English abstract)
[7]Hammer G L, Dong Z S, Mclean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. corn belt? Crop Sci, 2009, 49: 299–312
[8]齐文增, 刘慧慧, 李耕, 邵立杰, 王飞飞, 刘鹏, 董树亭, 张吉旺, 赵斌. 超高产夏玉米根系时空分布特性. 植物营养与肥料学报, 2012, 18: 69–76
Qi W Z, Liu H H, Li G, Shao L J, Wang F F, Liu P, Dong S T, Zhang J W, Zhao B. Temporal and spatial distribution characteristics of super-high-yield summer maize root. Plant Nutr Fert Sci, 2012, 18: 69–76 (in Chinese with English abstract)
[9]蔡红光, 刘剑钊, 张秀芝, 闫孝贡, 张洪喜, 袁静超, 盖嘉慧, 任军. 不同根构型玉米的根系形态及其对密度的响应. 玉米科学, 2014, 22(5): 81–85
Cai H G, Liu J Z, Zhang X Z, Yan X G, Zhang H X, Yuan J C, Gai J H, Ren J. Root morphology and its response to planting density in different genotypes with root architecture. J Maize Sci, 2014, 22(5): 81–85 (in Chinese with English abstract)
[10]王飞飞, 张善平, 邵立杰, 李耕, 陈晓璐, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵斌. 夏玉米不同土层根系对花后植株生长及产量形成的影响. 中国农业科学, 2013, 46: 4007–4017
Wang F F, Zhang S P, Shao L J, Li G, Chen X L, Liu P, Zhao B Q, Dong S T, Zhang J W, Zhao B. Effect of root in different soil layers on plant growth and yield formation after anthesis in summer maize. Sci Agric Sin, 2013, 46: 4007–4017 (in Chinese with English abstract)
[11]王敬锋, 刘鹏, 赵秉强, 董树亭, 张吉旺, 赵明, 杨吉顺, 李耕. 不同基因型玉米根系特性与氮素吸收利用的差异. 中国农业科学, 2011, 44: 699–707
Wang J F, Liu P, Zhao B Q, Dong S T, Zhang J W, Zhao M, Yang J S, Li G. Comparison of root characteristics and nitrogen uptake and use efficiency in different corn genotypes. Sci Agric Sin, 2011, 44: 699–707 (in Chinese with English abstract)
[12]姜平, 张承福. 淀粉含量的测定——旋光法. 发酵科技通讯, 1992,(1): 59–61
Jiang P, Zhang C F. Determination of starch content—polarimeter. Fermentation Technol Commun, 1992, (1): 59–61 (in Chinese with English abstract)
[13]李晓龙, 高聚林, 胡树平, 于晓芳, 王志刚, 苏治军, 谢岷. 不同深耕方式对土壤三相比及玉米根系构型的影响. 干旱地区农业研究, 2015, 33(4): 1–7
Li X L, Gao J L, Hu S P, Yu X F, Wang Z G, Su Z J, Xie M. Effects of various cultivation approaches on the three-phase ratio of soil and root system structure of maize. Agric Res Arid Areas, 2015, 33(4): 1–7 (in Chinese with English abstract)
[14]于晓芳, 高聚林, 叶君, 王志刚, 孙继颖, 胡树平, 苏治军. 深松及氮肥深施对超高产春玉米根系生长、产量及氮肥利用效率的影响. 玉米科学, 2013, 21(1): 114–119
Yu X F, Gao J L, Ye J, Wang Z G, Sun J Y, Hu S P, Su Z J. Effects of deep loosening with nitrogen deep placement on root growth, grain yield and nitrogen use efficiency of super high-yield spring maize. J Maize Sci, 2013, 21(1): 114–119 (in Chinese with English abstract)
[15]王群, 李潮海, 郝四平, 张永恩, 韩锦峰. 下层土壤容重对玉米生育后期光合特性和产量的影响. 应用生态学报, 2008, 19: 787–793
Wang Q, Li C H, Hao S P, Zhang Y E, Han J F. Effects of subsoil bulk density on late growth stage photo synthetic characteristics and grain yield of maize. Chin J Appl Ecol, 2008, 19: 787–793 (in Chinese with English abstract)
[16]张玉芹, 张恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 毕文波. 超高产春玉米的根系特征. 作物学报, 2011, 37: 735–743
Zhang Y Q, Zhang H S, Gao J L, Zhang R F, Wang Z G, Xu S J, Fan X Y, Bi W B. Root characteristics of super high-yield spring maize. Acta Agron Sin, 2011, 37: 735–743 (in Chinese with English abstract)
[17]Jackson R B, Sperry J S, Dawson T E. Root water uptake and transport: Using physiological processes in global predictions. Trends Plant Sci, 2000, 5: 482–488
[18]刘子会, 柳斌辉, 李运朝, 郭秀林. 起身期断根对冬小麦后期光合和生长的影响. 华北农学报, 2007, 22(5): 189–190
Liu Z H, Liu B H, Li Y Z, Guo X L. Effect of roots-cutting in double ridge stage on the photosynthetic rate and later growth of winter wheat. Acta Agric Boreali-Sin, 2007, 22(5): 189–190 (in Chinese with English abstract)
[19]王化岑, 刘万代, 王晨阳. 超高产小麦根系生长规律与垂直分布状态研究. 中国农学通报, 2002, 18(2): 6–8
Wang H C, Liu W D, Wang C Y. Study on the root growth regularity and the vertical distribution state of super high-yield wheat. Chin Agric Sci Bull, 2002, 18(2): 6–8 (in Chinese with English abstract)
[20]李飒, 彭云峰, 于鹏, 张瑜, 方正, 李春俭. 不同年代玉米品种干物质积累与钾素吸收及其分配. 植物营养与肥料学报, 2011, 17: 325–332
Li S, Peng Y F, Yu P, Zhang Y, Fang Z, Li C J. Accumulation and distribution of dry matter and potassium in maize varieties released in different years. Plant Nutr Fert Sci, 2011, 17: 325–332 (in Chinese with English abstract)
[21]戴明宏, 赵久然, 杨国航, 王荣焕, 陈国平. 不同生态区和不同品种玉米的源库关系及碳氮代谢. 中国农业科学, 2011, 44: 1585–1595
Dai M H, Zhao J R, Yang G H, Wang R H, Chen G P. Source-sink relationship and carbon–nitrogen metabolism of maize in different ecological regions and varieties. Sci Agric Sin, 2011, 44:1585–1595 (in Chinese with English abstract)
[22]Karlen D L, Sadler E J, Camp C R. Dry matter nitrogen, phosphorus and potassium accumulation rate by corn on Norfolk loamy sand. Agron J, 1987, 79: 649–656
[23]梁建生, 曹显祖. 杂交水稻叶片的若干生理指标与根系伤流强度关系. 江苏农学院学报, 1993, 14(4): 25–30
Liang J S, Cao X Z. Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice. J Jiangsu Agric Coll, 1993, 14(4): 25–30 (in Chinese with English abstract)
[24]Qi W Z, Liu H H, Liu P, Dong S T, Zhao B Q, So H B, Li G, Liu H D, Zhang J W, Zhao B. Morphological and physiological characteristics of corn (Zea mays L.) roots from cultivars with different yield potentials. Eur J Agron, 2012, 38: 54–63
[25]宋海星, 王学立. 玉米根系活力及吸收面积的空间分布变化. 西北农业学报, 2005, 14: 137–141
Song H X, Wang X L. The space distribution of the maize root activity and its absorbing area. Acta Agric Boreali-Occid Sin, 2005, 14: 137–141 (in Chinese with English abstract)
[26]慕自新, 张岁岐, 郝文芳, 梁爱华, 梁宗锁. 玉米根系形态性状和空间分布对水分利用效率的调控. 生态学报, 2005, 25(11): 103–108
Mu Z X, Zhang S Q, Hao W F, Liang A H, Liang Z S. The effect of root morphological traits and spatial distribution on WUE in maize. Acta Ecol Sin, 2005, 25(11): 103–108 (in Chinese with English abstract)
[27]周小平, 张岁岐, 杨晓青, 刘小芳, 刘立生. 玉米根系活力杂种优势及其与光合特性的关系. 西北农业学报, 2008, 17(4): 84–90
Zhou X P, Zhang S Q, Yang X Q, Liu X F, Liu L S. Heterosis of maize root activity and its relationship with photosynthetic characteristics. Acta Agric Boreali-occident Sin, 2008, 17(4): 84–90 (in Chinese with English abstract)
[28]刘殿英, 石立岩, 董庆裕. 不同时期追施肥水对冬小麦根系、根系活性和植株性状的影响. 作物学报, 1993, 19: 149–155
Liu D Y, Shi L Y, Dong Q Y. The effect of top-dressing and irrigation time on the root system, root activities and plant character in winter wheat. Acta Agron Sin, 1993, 19: 149–155 (in Chinese with English abstract)
[29]Otegui M E, Bonhomme R. Grain yield components in maize: I. Ear growth and grain set. Field Crops Res, 1998, 56: 247–256
[30]Paponov I A, Sambo P, Erley G S A, Presterl T, Geiger H H, Engels C. Grain yield and grain weight of two maize genotypes differing in nitrogen use efficiency at various levels of nitrogen and carbohydrate availability during flowering and grain filling. Plant Soil, 2005, 272: 111–123
[31]Borrás L, Westgate M E, Otegui M E. Control of grain weight and grain water relations by post-flowering source-sink ratio in maize. Ann Bot, 2003, 91: 857–867
[32]Costa C L, Dwyer L M, Zhou X M, Dutilleul P. Hamel C, Reid L M, Smith D L. Root morphology of contrasting maize genotypes. Agron J, 2002, 94: 96–101
[33]刘惠惠. 超高产夏玉米根系生理特性及其对籽粒发育的调控. 山东农业大学硕士学位论文, 山东泰安, 2012
Liu H H. Study on Effect of Root Physiological Characters on Grain Development of Super High-yield Summer Maize. MS Thesis of Shandong Agricultural University, Tai’an, China, 2012 (in Chinese with English abstract)
[34]常二华, 王朋, 唐成, 刘立军, 王志琴, 杨建昌. 水稻根和籽粒细胞分裂素和脱落酸浓度与籽粒灌浆及蒸煮品质的关系. 作物学报, 2006, 32: 540–547
Chang E H, Wang P, Tang C, Liu L J, Wang Z Q, Yang J C. Concentrations of cytokinin and abscisic acid in roots and grains and its relationship with grain filling and cooking quality of rice. Acta Agron Sin, 2006, 32: 540–547 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!