欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (12): 1827-1833.doi: 10.3724/SP.J.1006.2016.01827

• 耕作栽培·生理生化 • 上一篇    下一篇

SA、MeJA和ACC处理对甘蓝型油菜叶角质层蜡质组分、结构及渗透性的影响

李帅,赵秋棱,彭阳,徐熠,李加纳,倪郁*   

  1. 西南大学农学与生物科技学院,重庆 400715
  • 收稿日期:2016-03-29 修回日期:2016-07-11 出版日期:2016-12-12 网络出版日期:2016-08-01
  • 通讯作者: 倪郁, E-mail: nmniyu@126.com
  • 基金资助:

    本研究由中央高校基本科研业务费专项(XDJK2014B037),重庆市基础与前沿研究计划项目(cstc2016jcyjA0170)和国家自然科学基金项目(31000122)资助。

Effects of SA, MeJA, and ACC on Leaf Cuticular Wax Constituents, Structure and Permeability in Brassica napus

LI Shuai,ZHAO Qiu-Ling,PENG Yang,XU Yi,LI Jia-Na,NI Yu*   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
  • Received:2016-03-29 Revised:2016-07-11 Published:2016-12-12 Published online:2016-08-01
  • Contact: 倪郁, E-mail: nmniyu@126.com
  • Supported by:

    This study was supported by the Fundamental Research Funds for the Central Universities (XDJK2014B037), the Chongqing basic and advanced research project (cstc2016jcyjA0170), and the National Natural Science Foundation of China (31000122).

摘要:

角质层蜡质与植物适应逆境胁迫有关。本研究以甘蓝型油菜中双11为试材,在五叶期分别对其进行200 μmol L–1水杨酸(SA)溶液、1-氨基环丙烷-1-羧酸(ACC)溶液以及100 μmol L–1茉莉酸甲酯(MeJA)溶液浇灌处理,分析油菜叶角质层蜡质组分含量、结构以及角质层渗透性的变化。结果表明,MeJA处理7 d后,烷类、二级醇类、酮类、醛类含量以及蜡质总量与对照相比均显著增加,而处理14 d后,所有蜡质组分含量及蜡质总量与对照相比均显著减少;SA与ACC处理早期对叶片蜡质沉积无显著影响(SA处理14 d后,一级醇类、醛类及未知组分含量显著减少)。SA、MeJA和ACC处理21 d后均显著诱导油菜叶片角质层蜡质的沉积,蜡质组分中烷类、酮类、醛类显著增加,其中C29烷、C29酮、C30醛是被SA、MeJA和ACC诱导的主要蜡质组分,暗示烷类、酮类、醛类可能与这些信号分子介导的抗(耐)性反应密切相关。扫描电镜结果显示,SA处理减少叶表皮蜡质杆状结构,且部分区域熔融;MeJA与ACC处理增加油菜叶表皮蜡质的晶体结构密度。角质层蜡质的沉积与结构变化降低角质层渗透性,减缓叶片的水分散失,其中C29烷的特异性增加可能是造成叶片失水率降低的主要原因。

关键词: 甘蓝型油菜, 角质层蜡质, 水杨酸(SA), 茉莉酸甲酯(MeJA), 乙烯(ETH)

Abstract:

Cuticular waxes are related to plant adaptation to environment stress. In the current study, Brassica napus cv. Zhongshuang 11 grown in the soil treated with adding solutions of SA (200 μmol L–1), MeJA (100 μmol L–1), and ACC (200 μmol L–1) wax, were sampled at the five-leaf stage to clarify the effects of SA, MeJA and ETH on adjusting plant cuticular wax deposition. The leaves were used to analyze the amounts of total cuticular wax and wax constituents, wax crystal structure, and cuticular permeability. The amounts of n-alkanes, secondary alcohols, ketones, aldehydes and total cuticular waxes increased significantly when compared with the control at seven days after MeJA treatment, whereas the amounts of all wax constituents and total cuticular waxes significantly decreased at 14 days after MeJA treatment. The application of SA and ACC had no significant influence on cuticular wax deposition at 7 and 14 days after treatments, except for an amount reduction of primary alcohol, aldehyde and unknown constituents for SA treatment at 14 days after treatment. At 21 days after SA, MeJA, and ACC application, the amounts of total cuticular wax, n-alkanes, ketones and aldehyde significantly increased. C29 n-alkane, C29 ketone, and C30 aldehyde were the main cuticular wax constituents induced by SA, MeJA, and ACC application, implying that n-alkane, ketone and aldehyde might be related to the resistance to stresses induced by these signal molecules. Scan electric microscope analysis indicted that the rod-shape structure of cuticular wax in leaf surface reduced and some rods melted under SA treatment. MeJA and ACC application increased the distribution density of wax crystalloids. The cuticular wax deposition and crystal structure alteration reduced the cuticular permeability and delayed the leaf water loss. The specific increase of C29 n-alkane might be the main reason for reducing leaf water loss in B. napus.

Key words: Brassica napus L, Cuticular wax, Salicylic acid, Methyl jasmonic acid, Ethylene

[1] Kosma D K, Bourdenx B, Bernard A, Parsons E P, Lü S, Joubès J, Jenks M A. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol, 2009, 151: 1918–1929
[2] Ni Y, Xia R E, Li J N. Changes of epicuticular wax induced by enhanced UV-B radiation impact on gas exchange in Brassica napus. Acta Physiol Plant, 2014, 36: 2481–2490
[3] 倪郁, 宋超, 王小清. 低温胁迫下拟南芥表皮蜡质的响应机制. 中国农业科学, 2014, 47: 252–261
Ni Y, Song C, Wang X Q. Investigation on response mechanism of epicuticular wax on Arabidopsis thaliana under cold stress. Sci Agric Sin, 2014, 47: 252–261 (in Chinese with English abstract)
[4] 倪郁, 宋超, 王小清. 核盘菌侵染对拟南芥表皮蜡质结构及化学组成的影响. 生态学报, 2014, 34: 4160–4166
Ni Y, Song C, Wang X Q. Effects of Sclerotinia sclerotiorum on the morphology and chemical constituents of epicuticular wax in Arabidopsis thaliana stems. Acta Ecol Sin, 2014, 34: 4160–4166 (in Chinese with English abstract)
[5] Cajustea J F, González-Candelasa L, Veyrat A, García-Breijo F J, Reig-Arminana J, Lafuente M T. Epicuticular wax content and morphology as related to ethylene and storage performance of ‘Navelate’ orange fruit. Postharvest Biol Tec, 2010, 55: 29–35
[6] Curry E. Effects of 1-MCP applied postharvest on epicuticular wax of apples (Malus domestica Borkh.) during storage. J Sci Food Agric, 2008, 88: 996–1006
[7] Macková J, Vašková M, Macek P, Hronková M, Schreiber L, Šantr??ek J. Plant response to drought stress simulated by ABA application: changes in chemical composition of cuticular waxes. Environ Exp Bot, 2013, 86: 70–75
[8] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138–1152
[9] Baker E A. The influence of environment on leaf wax development in Brassica oleracea var. gemmifera. New Phytol, 1974, 73: 955–966
[10] Grant R H, Heisler G M, Gao W, Jenks M. Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics. Agric For Meteorol, 2003, 120: 127–139
[11] Khan M I, Fatma M, Per T S. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci, 2015, 6: 462–478
[12] Cheong J J, Yang D C. Methyl jasmonate as a vital substance in plants. Trends Genet, 2003, 19: 409–413
[13] Morgan P W, Drew M C. Ethylene and plant responses to stress. Physiol Plant, 1997, 100: 620–630
[14] Leide J, Hildebrandt U, Vogg G, Riederer M. The positional sterile (ps) mutation affects cuticular transpiration and wax biosynthesis of tomato fruits. J Plant Physiol, 2011, 168: 871–877
[15] Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opins Plant Biol, 2002, 5: 430–436
[16] Broun P, Poindexter P, Osborne E, Jiang C Z, Riechmann J L. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 4706–4711
[17] Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 2004, 16: 2463–2480
[18] Ni Y, Guo Y J, Wang J, Xia R E, Wang X Q, Ash G, Li J N. Responses of physiological indexes and leaf epicuticular waxes of Brassica napus to Sclerotinia sclerotiorum infection. Plant Pathol, 2014, 63: 174–184
[19] Kosma D K, Nemacheck J A, Jenks M A, Williams C E. Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J, 2010, 63: 31–43
[20] Garbay B, Tautu M T, Costaglioli P. Low level of pathogenesis-related protein 1 mRNA expression in 15-day-old Arabidopsis cer6-2 and cer2 eceriferum mutants. Plant Sci, 2007, 172: 299–305
[21] Staswick P E, Su W, Howell S H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA, 1992, 89: 6837–6840
[22] 李延安, 祁林林, 孙加强, 刘宏宇, 李传友. 茉莉酸诱导侧根形成缺陷突变体asa1-1抑制子(soa)的鉴定与遗传分析. 遗传, 2011, 33: 1003–1010
Li Y A, Qi L L, Sun J Q, Liu H Y, Li C Y. Genetic screening and analysis of suppressors of asa1-1 (soa) defective in jasmonate-mediated lateral root formation in Arabidopsis. Hereditas, 2011, 33: 1003–1010 (in Chinese with English abstract)
[23] Boughton A J, Hoover K, Felton G W. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J Chem Ecol, 2005, 31: 2211–2216
[24] Holloway P J, Brown G A, Baker E A, Macey M J K. Chemical composition and ultrastructure of the epicuticular wax in three lines of Brassica napus (L). Chem Phys Lipids, 1977, 19: 114–127
[25] Weng H, Molina I, Shockey J, Browse J. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta, 2010, 231: 1089–1100
[26] Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubes J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol, 2011, 156: 29–45
[27] Zhang J Y, Broeckling C D, Sumner L W, Wang Z Y. Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol, 2007, 64: 265–278
[28] Oliveira A F M, Meirelles S T, Salatino A. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. An Acad Bras Cienc, 2003, 75: 431–439
[29] Yang M, Yang Q Y, Fu T D, Zhou Y M. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep, 2011, 30: 373–388
[30] Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy A A, Riederer M. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl-CoA synthase. J Exp Bot, 2004, 55: 1401–1410
[31] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005, 43: 205–227
[32] Thomma B P H J, Eggermont K, Penninckx I A M A, Mauch-Mani B, Vogelsang R, Cammue B P A, Broeckaert W. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA, 1998, 95: 15107–15111

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[6] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[7] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[8] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[9] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[10] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[11] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[12] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[13] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[14] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[15] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!