作物学报 ›› 2017, Vol. 43 ›› Issue (05): 678-690.doi: 10.3724/SP.J.1006.2017.00678
杨慧丽1,林亚楠1,张怀胜1,卫晓轶2,丁冬1,薛亚东1,*
YANG Hui-Li1,LIN Ya-Nan1,ZHANG Huai-Sheng1,WEI Xiao-Yi2,DING Dong1,XUE Ya-Dong1,*
摘要:
开花期是玉米进化和适应过程中的重要性状,明确开花期杂种优势的遗传机制对培育适应不同生态区的优良玉米品种具有重要的意义。本研究利用以许178为受体,综3为供体构建的包含203个SSSL的单片段代换系群体及其与许178的测交群体,通过2年3个试点玉米开花期性状(散粉期、吐丝期和散粉至吐丝间隔) QTL和杂种优势位点(HL)分析,分别鉴定出40个开花期相关性状的QTL和37个开花期相关性状的HL。其中6个QTL和4个HL在3个地点被同时检测到。在所检测到的染色体区段中,11个区段同时包含调控开花期的QTL和HL。该研究为进一步解析玉米开花期遗传机制和开花期杂种优势的遗传机制提供了基础。
[1]Birchler J A, Yao H, Chudalayandi S, Vaiman D, Veitia R A. Heterosis. Pant Cell, 2010, 22: 2105–2112 [2]Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, Xing Y, Xiao J, Zhang Q. Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2012, 109: 15847–15852 [3]Guo X, Guo Y, Ma J, Wang F, Sun M, Gui L, Zhou J, Song X, Sun X, Zhang T. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol, 2013, 55: 759–774 [4]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823–839 [5]Lariepe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet J, Gallais A, Dubreuil P, Charcosset A, Moreau L. The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics, 2012, 190: 795–811 [6]Lu H, Romero-Severson J, Bernardo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet, 2003, 107: 494–502 [7]Tang J, Ma X, Teng W, Yan J, Wu W, Dai J, Li J. Detection of quantitative trait loci and heterotic loci for plant height using an immortalized F2 population in maize. Chin Sci Bull, 2007, 52: 477–483 [8]Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon B S, Melchinger A E, Li J. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet, 2010, 120: 333–340 [9]Melchinger A E, Utz H F, Piepho H P, Zeng Z B, Schon C C. The role of epistasis in the manifestation of heterosis: A systems-oriented approach. Genetics, 2007, 177: 1815–1825 [10]Groszmann M, Greaves I K, Albertyn Z I, Scofield G N, Peacock W J, Dennis E S. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci USA, 2011, 108: 2617–2622 [11]Li A, Zhou Y, Jin C, Song W, Chen C, Wang C. LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in arabidopsis. Plant Cell Physiol, 2013, 54: 1822–1836 [12]Guo M, Rupe M A, Wei J, Winkler C, Goncalves-Butruille M, Weers B P, Cerwick S F, Dieter J A, Duncan K E, Howard R J, Hou Z L, L?ffler C M, Cooper M, Simmons C R. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot, 2014, 65: 249–260 [13]Zhang Y, Ni Z, Yao Y, Nie X, Sun Q. Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet, 2007, 8(1): 40 [14]Ni Z, Kim E D, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen Z J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457: 327–331 [15]Atwell S, Huang Y S, Vilhjálmsson B J, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone A M, Hu T T, Jiang R, Muliyati N W, Zhang X, Amer M A, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Echker J R, Faure N, Kniskern J M, Jones J D, Michael T, Nemri A, Roux F, Salt D E, Tang C, Todesco M, Traw M B, Weigel D, Marjoram P, Borevitz J O, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010, 465: 627–631 [16]Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Villeda H S, Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z W, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325: 714–718 [17]Colasanti J, Yuan Z, Sundaresan V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell, 1998, 93: 593–603 [18]Muszynski M G, Dam T, Li B, Shirbroun D M, Hou Z, Bruggemann E, Archibald R, Ananiev E V, Danilevskaya O N. Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006, 142: 1523–1536 [19]Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler K A, Meeley R, Ananiev E V, Svitashev S, Bruggemann E, Li B, Hainey C F, Radovic S, Zaina G, Rafalski J A, Tingey S V, Miao G H, Phillips R L, Tuberosa R. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA, 2007, 104: 11376–11381 [20]Coles N D, McMullen M D, Balint-Kurti P J, Pratt R C, Holland J B. Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics, 2010, 184: 799–812 [21]Miller T A, Muslin E H, Dorweiler J E. A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta, 2008, 227: 1377–1388 [22]Bomblies K. Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics, 2005, 172: 519–531 [23]Meng X, Muszynski M G, Danilevskaya O N. The FT-Like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell, 2011, 23: 942–960 [24]Krieger U, Lippman Z B, Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet, 2010, 42: 459–463 [25]Jiang K, Liberatore K L, Park S J, Alvarez J P, Lippman Z B. Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genet, 2013, 9(12): e1004043 [26]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767 [27]张向歌. 基于玉米单片段代换系测交群体的植株性状杂种优势分析. 河南农业大学硕士学位论文, 河南郑州, 2014 Zhang X G. Analysis of Heterotic Loci for Plant Architecture Characters using the Testcross Population of SSSLs in Maize. MS Thesis of Henan Agricultural University, Zhengzhou, China, 2014 (in Chinese with English abstract) [28]潘家驹. 作物育种学总论. 北京: 中国农业出版社, 1994 Pan J J. Crop Breeding. Beijing: China Agriculture Press, 1994 (in Chinese) [29]Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q, Maroof M A S. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226–9231 [30]Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald P C, Harrington S E, Second G, McCouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138: 1251–1274 [31]Zhu L, Chen J, Li D, Zhang J, Huang Y, Zhao Y, Song Z, Liu Z. QTL mapping for stalk related traits in maize (Zea mays L.) under different densities. J Integr Agric, 2013, 12: 218–228 [32]Li Q C, Li Y X, Yang Z Z, Li Y. QTL mapping for plant height and ear height by using multiple related RIL populations in maize. Acta Agron Sin, 2013, 39: 1521–1529 (in Chinese with English abstract) [33]Koester R P, Sisco P H, Stuber C W. Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize. Crop Sci, 1993, 33: 1209–1216 [34]Zhang S, Feng L, Xing L, Yang B, Gao X, Zhu X, Zhang T, Zhou B. New QTLs for lint percentage and boll weight mined in introgression lines from two feral landraces into Gossypium hirsutum acc TM-1. Plant Breed, 2016, 135: 90–101 [35]Lu M Y, Li X H, Shang A L, Wang Y M, Xi Z Y. Characterization of a set of chromosome single-segment substitution lines derived from two sequenced elite maize inbred lines. Maydica, 2011, 56: 399–407 [36]毛克举. 玉米染色体单片段代换系的构建与株型和开花期性状的QTL定位. 河南农业大学硕士学位论文, 河南郑州, 2013 Mao K J. Construction of Single Segment Substitution Lines in Maize and QTL Mapping for Flowering Time-related Traits. MS Thesis of Henan Agricultural University, Zhengzhou, China, 2013 (in Chinese with English abstract) [37]Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574–2579 [38]Qi H H, Huang J, Zheng Q, Huang Y Q, Shao R X, Zhu L Y, Zhang Z X, Qiu F Z, Zhou G C, Zheng Y L, Yue B. Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theor Appl Genet, 2013, 126: 369–377 [39]Liu G, Zhu H, Zhang G, Li L, Ye G. Dynamic analysis of QTLs on tiller number in rice (Oryza sativa L.) with single segment substitution lines. Theor Appl Genet, 2012, 125: 143–153 [40]王智权, 江玲, 尹长斌, 王晓玲, 雷建国, 肖宇龙, 刘喜, 刘世家, 陈明亮, 余传元, 万建民. 水稻产量相关农艺性状杂种优势位点的定位. 中国水稻科学, 2013, 27: 569–576 Wang Z Q, Jiang L, Yin C B, Wang X L, Lei J G, Xiao Y L, Liu X, Liu S J, Chen M L, Yu C Y, Wan J M. QTL mapping of heterotic loci for yield-related traits in rice. Chin J Rice Sci, 2013, 27: 569–576 (in Chinese with English abstract) [41]郭战勇, 吕盼晴, 张向歌, 孙高阳, 王洪秋, 李卫华, 付志远, 汤继华. 利用单片段代换系的测交群体定位玉米籽粒性状杂种优势位点. 中国农业科学, 2016, 49: 621–631 Guo Z Y, Lyu P Q, Zhang X G, Sun G Y, Wang H Q, Li W H, Fu Z Y, Tang J H. Identification of heterotic loci for kernel-related traits using a maize introgression lines test population. Sci Agric Sin, 2016, 49: 621–631 (in Chinese with English abstract) [42]彭倩, 薛亚东, 张向歌, 李慧敏, 孙高阳, 李卫华, 谢慧玲, 汤继华. 利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点. 作物学报, 2016, 42: 482–491 Peng Q, Xue Y D, Zhang X G, Li H M, Sun G Y, Li W H, Xie H L, Tang J H. Identification of heterotic loci for yield and ear traits using t SSSLs test population in maize. Acta Agron Sin, 2016, 42: 482–491 (in Chinese with English abstract) [43]Wei X, Wang B, Peng Q, Wei F, Mao K, Zhang X, Sun P, Liu Z, Tang J. Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Mol Breed [Internet], 2015, [cited 2016 Mar 8] 35(3) Available from: http://link.springer.com/10.1007/s11032-015-0287-4 [44]李卓坤, 谢全刚, 朱占玲, 刘金良, 韩淑晓, 田宾, 袁倩倩, 田纪春. 基于QTL 定位分析小麦株高的杂种优势. 作物学报, 2010, 36: 771–778 Li Z K, Xie Q G, Zhu Z L, Liu J L, Han S X, Tian B, Yuan Q Q, Tian J C. Analysis of plant height heterosis based on QTL mapping in wheat. Acta Agron Sin, 2010, 36: 771–778 (in Chinese with English abstract) [45]Wei X, Lu X, Zhang Z, Xu M, Mao K, Li W, Wei F, Sun P, Tang J. Genetic analysis of heterosis for maize grain yield and its components in a set of SSSL testcross populations. Euphytica [Internet], 2016, [cited 2016 Jun 4] Available from: http://link.springer.com/10.1007/s10681-016-1695-1 [46]Sch?n C C, Dhillon B S, Utz H F, Melchinger A E. High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor Appl Genet, 2010, 120: 321–332 [47]Schnable P S, Springer N M. Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol, 2013, 64: 71–88 [48]Shen G, Zhan W, Chen H, Xing Y. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Sci, 2014, 215/216: 11–18 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[10] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[11] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[12] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[13] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[14] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[15] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
|