欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (05): 691-700.doi: 10.3724/SP.J.1006.2017.00691

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦突变体AS208中Glu-B1位点缺失对籽粒中蛋白体形成和储藏蛋白合成与加工相关基因表达的影响

刘会云1,**,王婉晴2,**,李欣1,王轲1,王龙3,杜丽璞1,晏月明2,*,叶兴国1,*   

  1. 1中国农业科学院作物科学研究所 / 国家农作物基因资源与基因改良重大科学工程,北京 100081;2首都师范大学生命科学学院,北京 100048;3中国科学院遗传与发育生物学研究所 / 植物细胞与染色体工程国家重点实验室,北京 100101
  • 收稿日期:2016-04-24 修回日期:2016-11-03 出版日期:2017-05-12 网络出版日期:2016-12-02
  • 通讯作者: 晏月明, E-mail: yanym2004@163.com; 叶兴国, E-mail: yexingguo@caas.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31371621)资助。

Glu-B1 Silencing Influences Protein Body Formation and Expression of Genes Regulating Synthesis and Processing of Seed-Storage Protein in Somatic mutant Wheat AS208

LIU Hui-Yun1,**,WANG Wan-Qing2,**,LI Xin1, WANG Ke1,WANG Long3,DU Li-Pu1,YANG Yue-Ming2,*,YE Xing-Guo1,*   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; 2 College of Life Science, Capital Normal University, Beijing 100048, China; 3 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences / State Key Laboratory of Plant Cell and Chromosome Engineering, Beijing 100101, China
  • Received:2016-04-24 Revised:2016-11-03 Published:2017-05-12 Published online:2016-12-02
  • Contact: Yan yueming, E-mail: yanym2004@163.com; Ye Xingguo, E-mail: yexingguo@caas.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31371621).

摘要:

高分子量谷蛋白亚基(HMW-GS)是小麦籽粒贮藏蛋白的重要成分,其组成、表达和含量决定面团弹性和加工品质。本研究以Glu-B1位点上1Bx20和1By20双亚基沉默的小麦无性系变异体AS208为材料,以AS208的来源亲本轮选987作为对照,对AS208中Glu-B1位点的沉默机制和1Bx20、1By20亚基沉默对种子中蛋白体融合以及合成加工相关基因表达的影响进行了研究。Southern blot分析发现AS208比轮选987少2条特异带,染色体原位杂交(FISH)结果显示轮选987中有6条染色体出现杂交信号,而在AS208中有4条染色体出现杂交信号,表明AS208基因组中缺失Glu-B1位点。透射电镜观察发现,与轮选987相比,AS208的籽粒蛋白体形成过程,以及蛋白体大小和形状基本一致。qRT-PCR检测发现,在12个与籽粒蛋白质合成与加工相关基因中,有7个的表达模式两品种相似,有8个的表达量在AS208中高于在轮选987中,特别是Bip、PDI-1和PDI-5基因(高1.5~2.0倍)。本研究结果表明,小麦Glu-B1位点的基因对种子中蛋白体的形成没有明显影响,但一定程度上刺激了多数蛋白质合成和加工相关基因的表达,保证了种子内蛋白含量、蛋白体外形和大小基本不变,表现负反馈调节效应。

关键词: 小麦, 高分子量谷蛋白亚基, 蛋白体, 转录因子, 分子伴侣

Abstract:

High-molecular-weight-glutenin subunits (HMW-GSs) are important components of seed storage proteins in grains of wheat (Triticum aestivum L.), which determine wheat dough elasticity and processing quality. Using AS208, a wheat somatic variation line with silenced 1Bx20 and 1By20 at Glu-B1 locus, and its originating cultivar Lunxuan 987, we studied the present status of Glu-B1, protein body (PB) formation progress, and expression trends of four kinds of genes (BiP, Dof, PDI, and SPA) related to glutenin synthesis and accumulation at different stages of grain development. Southern blotting analysis revealed that AS208 had two specific bands less than its control parent Lunxuan 987. The fluorescence in situ hybridization (FISH) assay showed six and four chromosomes with signals in Lunxuan 987 and AS208, respectively. These results prove that the Glu-B1 locus has been deleted from the genome of AS208. Compared to Lunxuan 987, AS208 showed similar size and shape of seed PB during PB formation under a transmission electron microscope (TEM). A total of 12 transcription-factor or molecular-chaperone genes were subjected to qRT-PCR assay. These genes were related to glutenin coding genes expression, storage proteins accumulation and processing, PB assembling and transportation. Seven out of 12 genes had simialr expression patterns in AS208 and Lunxuan 987, and eight genes were expressed more in AS208 than in Lunxuan 987, especially the expression levels of Bip, PDI-1, and PDI-5 were 1.5–2.0 folds higher in AS208 than in Lunxuan 987. Our results suggested that Glu-B1 silencing had no significant effect on the formation of PB during wheat grain development, but partially spurred the expression of some genes regulating the synthesis and processing of seed-storage proteins. As a result, via a negative feedback regulation pathway, the protein content in seed and the shape and size of PB remain in similar levels between AS208 and its originating cultivar.

Key words: Wheat, High molecular weight glutenin subunits, Protein body, Transcription factor, Molecular chaperones

[1] Wrigley C W. Giant proteins with flour power. Nature, 1996, 381: 738–739 [2] Metakovsky E V, Novoselskaya A Y, Sozinov A A. Genetic analysis of gliadin components in winter wheat using two-dimensional polyacrylamide gel electrophoresis. Theor Appl Genet, 1984, 69: 31–37 [3] Ma W, Appels R F, Larroque O, Morell M, Gale K. Genetic characterization of drought rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interactions. Theor Appl Genet, 2005, 111: 410–422 [4] Rasheed A, Xia X, Yan Y, Appels R, Mahmood T. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J Cereal Sci, 2014, 60: 11–24 [5] He Z H, Liu L, Xia X C, Liu J J, Pena R J. Composition of HMW and LMW glutenin sububits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chem, 2005, 82: 345–350 [6] D’Ovidio R, Masci S. The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci, 2004, 39: 321–339 [7] Yang Y S, Li S M, Zhang K P, Dong Z Y, Li Y W, An X L, Jing C, Chen Q F, Jiao Z, Liu X, Qin H J, Wang D W. Efficient isolation of ion beam-induced mutants for homoeologous loci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality. Theor Appl Genet, 2014, 127: 359–372 [8] Li Y W, An X L, Yang R, Guo X M, Yue G D, Fan R C, Li B. Dissecting and enhancing the contributions of high-molecular-weight glutenin subunits to dough functionality and bread quality. Mol Plant, 2015, 8: 332–334 [9] Upelnick V P, Novoselskaya A Y, Sutka J, Galiba G, Metakovsky E V. Genetic variation at storage protein-coding loci of common wheat (cv ‘Chinese Spring’) induced by nitrosoethylurea and by the cultivation of immature embryos in vitro. Theor Appl Genet, 1995, 90: 372–379 [10] Beshkova N, Ivanov P, Ivanova I. Further evidence for glutenin modifications in winter wheat (Triticum aestivum L.) induced by somaclonal variation. Biotechnol & Biotechnol Eq, 1998, 12(2): 53–57 [11] She M Y, Ye X G, Yan Y M, Howit C, Belgard M, Ma W J. Gene networks in the synthesis and deposition of protein polymers during grain development of wheat. Funct Integr Genomics, 2011, 11: 23–35 [12] Jolliffe N A, Craddock C P, Frigerio L. Pathways for protein transport to seed storage vacuoles. Biochem Soc Trans, 2005, 33: 1016–1018 [13] Ciaffi M, Paolacci A R, D’Aloisio E, Tanzarella O A, Porceddu E. Cloning and characterization of wheat PDI (protein disulfide isomerase) homoeologous genes and promoter sequences. Gene, 2006, 366: 209–218 [14] D’Aloisio E, Paolacci A R, Dhanapal A P, Tanzarella O A, Porceddu E, Ciaffi M. The protein disulfide isomerase gene family in bread wheat (T. aestivum L.). BMC Plant Biol, 2010, 10: 47–63 [15] Yanagisawa S. The transcriptional activation domain of the plant-specific Dof1 factor functions in plant, animal, and yeast cells. Plant Cell Physiol, 2001, 42: 813–822 [16] Zhu J T, Hao P C, Chen G X, Han C X, Li X H, Zeller F J, Hsam S L, Hu Y K, Yan Y M. Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.). BMC Plant Biol, 2014, 14: 260 [17] Wang S L, Yu Z T, Cao M, Shen X X, Li N, Li X H, Ma W J, Wei?gerber H, Zeller F, Hsam S, Yan Y M. Molecular mechanisms of HMW glutenin subunits from 1Sl genome of Aegilops longissima positively affecting wheat breadmaking quality. PLoS One, 8: e58947 [18] Liu H Y, Wang K, Xiao L L, Wang S L, Du L P, Cao X Y, Zhang X X, Zhou Y, Yan Y M, Ye X G. Comprehensive identification and bread-making quality evaluation of common wheat somatic variation line AS208 on glutenin composition. PLoS One, 2016, 11: e0146933 [19] Hammond S M, Caudy A A, Hannon G J. Post-transcriptional gene silencing by double stranded RNA. Nat Rev Genet, 2001, 2: 110–119 [20] 陈昆松, 李方, 徐昌杰, 张上隆, 傅承新. 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传, 2004, 26: 529–531 Chen K S, Li F, Xu C J, Zhang S L, Fu C X. An efficient macro-method of genomic DNA isolation from Actinidai chinensis leaves. Hereditas (Beijing), 2004, 26: 529–531 (in Chinese with English abstract) [21] Guo X, Han F P. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell, 2014, 26: 4311–4327 [22] Loussert C, Popineau Y, Mangavel C. Protein bodies ontogeny and localization of prolamin components in the developing endosperm of wheat caryopses. J Cereal Sci, 2008, 47: 445–456 [23] Galili G, Sengupta-Gopalan C, Ceriotti A. The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies. Plant Mol Biol, 1998, 38: 1–29 [24] Yasuda H, Hirose S, Kawakatsu T, Wakasa Y, Takaiwa F. Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant Cell Physiol, 2009, 50: 1532–1543 [25] Muench D G, Wu Y, Zhang Y, Li X, Boston R S. Molecular cloning, expression and subcellular localization of a BiP homologue from rice endosperm tissue. Plant Cell Physiol, 1997, 38: 404–412 [26] Li X, Wu Y, Zhang D Z, Gillikin J W, Boston R S. Rice prolamine protein body biogenesis: a BiP-mediated process. Science, 1993, 262: 1054–1056 [27] Lu D P, Christopher D A. Light enhances the unfolded protein response as measured by BiP2 gene expression and the secretory GFP-2SC marker in Arabidopsis. Physiol Plant, 2008, 134: 360–368 [28] Johnson J C, Bhave M. Molecular characterisation of the protein disulphide isomerase genes of wheat. Plant Sci, 2004, 167: 397–410 [29] Turano C, Coppari S, Altieri F, Ferraro A. Poteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol, 2002, 193: 154–163 [30] Iwasaki K, Kamauchi S, Wadahama H, Ishimoto M, Kawada T, Urade R. Molecular cloning and characterization of soybean protein disulfide isomerase family proteins with non classic active center motifs. FEBS J, 2009, 276: 4130–4141 [31] Zhu C, Luo N N, He M, Chen G X, Zhu J T, Yin G J, Li X H, Hu Y K, Li J R, Yan Y M. Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L. PLoS One, 2014, 9: e94704 [32] Yanagisawa S. Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol, 2004, 45: 386–391 [33] Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol, 2003, 3: 17 [34] Chen X, Wang D, Liu C, Wang M, Wang T, Zhao Q, Yu J. Maize transcription factor Zmdof1 involves in the regulation of Zm401 gene. Plant Growth Regul, 2012, 66: 271–284 [35] Guillaumie S, Charmet G, Linossier L, Torney V, Robert N, Ravel C. Colocation between a gene encoding the bZIP factor SPA and an eQTL for a high-molecular-weight glutenin subunit in wheat (Triticum aestivum). Genome, 2004, 47: 705–713 [36] Ravel C, Martre P, Romeuf I, Dardevet M, El-Malki R, Bordes J, Duchateau N, Brunel D, Balfourier F, Charmet G. Nucleotide polymorphism in the wheat transcriptional activator Spa influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity, and grain hardness. Plant Physiol, 2009, 151: 2133–2144

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[4] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!