欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (7): 1000-1009.doi: 10.3724/SP.J.1006.2018.01000

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米低磷胁迫诱导型强启动子P1502-ZmPHR1的克隆与表达分析

杨瑞娟1,2,白建荣2,*(),闫蕾2,苏亮2,王秀红3,李锐2,张丛卓2   

  1. 1 山西大学生物工程学院, 山西太原 030006
    2 山西省农业科学院作物科学研究所, 山西太原 030031
    3 山西省农业科学院现代农业研究中心, 山西太原 030031
  • 收稿日期:2018-01-02 接受日期:2018-03-26 出版日期:2018-07-10 网络出版日期:2018-04-10
  • 通讯作者: 白建荣
  • 基金资助:
    本研究由山西省农业科学院农业科技创新项目(ZDSYS1507)资助

Cloning and Expression Analysis of Strong Inducible Promoter P1502-ZmPHR1 Responding to Low Phosphorus Stress in Maize

Rui-Juan YANG1,2,Jian-Rong BAI2,*(),Lei YAN2,Liang SU2,Xiu-Hong WANG3,Rui LI2,Cong-Zhuo ZHANG2   

  1. 1 College of Biology Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
    2 Institute of Crop Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
    3 Research Center of Modern Agriculture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
  • Received:2018-01-02 Accepted:2018-03-26 Published:2018-07-10 Published online:2018-04-10
  • Contact: Jian-Rong BAI
  • Supported by:
    This study was supported by the Agricultural Science and Technology Innovation Program of Shanxi Academy of Agricultural Sciences (ZDSY1507).

摘要:

玉米ZmPHR1基因是转录因子MYB-CC家族成员, 过量表达该基因可促进低磷环境中植物对磷的吸收并改善植物的生长。本研究从磷高效利用型玉米自交系478中获得了ZmPHR1基因的5°上游序列P2205-ZmPHR1, 序列长度2205 bp。将P2205-ZmPHR1及它的4种5°端缺失启动子片段与报告基因GUS连接后转化拟南芥。GUS组织化学染色与GUS定量分析结果表明, 在0~1502 bp的片段范围内, 随着片段长度的增加, 它对外界低磷环境的响应逐步增加, 在-1502 bp时, 响应时间短, 表达活性高, 持续时间长; 超过1502 bp其活性不但没有增高, 反而变为下降或无变化。推测0至-972 bp为启动子功能区段, -972 bp至-1502 bp为启动功能增强区段。转P1502-ZmPHR1拟南芥的实时定量PCR结果显示, P1502-ZmPHR1既受外界信号的刺激, 也受体内基因产物的影响, 有反馈调节的作用, 是一个受低磷胁迫诱导的强诱导型启动子, 它诱导基因表达的功能受体内外磷浓度的调节。该研究为在低磷环境改良作物提供了理想的启动子和应用依据。

关键词: 玉米, 低磷胁迫, 强诱导型启动子, P1502-ZmPHR1

Abstract:

ZmPHR1, a member of transcription factor MYB-CC family, enhanced phosphate absorption and improved plant growth when it was overexpressed under low-phosphate conditions. In order to elucidate the transcriptional regulatory mechanism of the promoter of ZmPHR1, its 5′ upstream sequence P2205-ZmPHR1 was cloned from P-efficient maize inbred line 478. The full length of P2205-ZmPHR1 and four sequence deletion fragments in different lengths fused with the reporter gene GUS were transformed into Arabidopsis, respectively. The results of histochemical and quantitative fluorometric GUS assay showed that in the interval from 0 to -1502 bp, the response time and activity of sequence deletion fragments were increased with increasing fragment length. However, the activities were decreased or unchanged when the length of fragments were longer than 1502 bp. It was considered that the interval from 0 to -972 bp was function region and that from -972 bp to -1502 bp was function enhancing region. The results of qPCR analysis in transgenic plants at different time points (0, 1, 2, 3, and 4 days) after P-stress treatment showed that the activities of P1502-ZmPHR1 were influenced by both external signals and internal gene products, having feedback regulation. This study indicates that P1502-ZmPHR1 is a strong inducible promoter responding to low phosphorus stress and its functional activity is regulated by both external and internal phosphate concentration. These fundings provide an ideal promoter for crop improvement under low phosphate conditions and a basis for its application.

Key words: maize, low phosphorus stress, strong inducible promoter, P1502-ZmPHR1

表1

PCR所用引物"

引物名称
Primer name
序列
Sequence (5'-3')
SF1 GTCGACTTGTGATCGCAGTACGAAAA
SF2 GTCGACCATCACACCTGTACTTGGC
SF3 GTCGACTGCTGGGCTTTTGATTCC
SF4 GTCGACCAGGTGGACCCACGTATC
SF5 GTCGACCCTGTCGTGTTGGACTTG
SR AGATCTacCATTCAGAGCAGTGAACAAGCTC
qGUS-F CCGTCCCAAGCAGTTACAAT
qGUS-R CGATACGCTGATCCTTCAGATAG
AtACT2-qRT-F GGAATCGTTCACAGAAAATG
AtACT2-qRT-R CAAACAAATGGAGAAGCAAA

附图1

玉米478与B73 ZmPHR1基因5'上游序列比对"

图1

P2205-ZmPHR1扩增片段"

图2

P2205-ZmPHR1顺式作用元件分析"

图3

P2205-ZmPHR1 5°端缺失片段顺式作用元件示意图"

图4

P2205-ZmPHR1 5°端缺失片段扩增图"

图5

T1转基因拟南芥的PCR检测"

图6

低磷胁迫条件下转基因拟南芥GUS染色分析"

图7

低磷胁迫条件下转基因拟南芥GUS定量分析*和**分别表示低磷胁迫处理与对照(0 h)在0.05和0.01概率水平差异显著(t检验)。"

图8

低磷胁迫条件下转基因拟南芥TP1502-ZmPHR1表达量分析"

[1] Jennings D H . Mineral nutrition in higher plants (book). Plant Cell Environ, 1988,11:147
doi: 10.1111/1365-3040.ep11604921
[2] Raghothama K G . Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:665-693
doi: 10.1146/annurev.arplant.50.1.665
[3] Smith F W, Mudge S R, Rae A L, Glassop D . Phosphate transport in plants. Plant Soil, 2003,248:71-83
doi: 10.1023/A:1022376332180
[4] 刘建中, 李振声, 李继云 . 利用植物自身潜力提高土壤中磷的生物有效性. 中国生态农业学报, 1994,2(1):16-23
Liu J Z, Li Z S, Li J Y . Utilization of plant potentialities to enhance the bio-efficiency of phosphorus in soil. Chin J Eco-Agric, 1994,2(1):16-23 (in Chinese with English abstract)
[5] Raghothama K G . Phosphate transport and signaling. Curr Opin Plant Biol, 2000,3:182-187
doi: 10.1016/S1369-5266(00)00062-5
[6] Rubio V, Linhares F, Solano R, Martín A C, Iglesias J, Leyva A, Paz-Ares J . A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev, 2001,15:2122-2133
doi: 10.1101/gad.204401
[7] Zhou J, Jiao F C, Wu Z C, Li Y Y, Wang X M, He X W, Zhong W Q, Wu P . OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008,146:1673-1786
[8] Wu P, Wang X M . Role of OsPHR2 on phosphorus homeostasis and root hairs development in rice(Oryza sativa L.). Plant Signal Behav, 2008,3:674-675
[9] 张景涛, 马信, 李国瑜, 袁园园, 王庆专, 杜斌, 王洪刚 . 小麦TaPHR1基因表达载体的构建. 分子植物育种, 2010,8:161-166
doi: 10.3969/mpb.008.000161
Zhang J T, Ma X, LI G Y, Yuan Y Y, Wang Q Z, Du B, Wang H G . Construction on expression vector of TaPHR1 gene in wheat. Mol Plant Breed, 2010,8:161-166 (in Chinese with English abstract)
doi: 10.3969/mpb.008.000161
[10] Ren F, Guo Q Q, Chang L L, Chen L, Zhao C Z, Zhong H, Li X B . Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation. PLoS One, 2012,7:e44005
doi: 10.1371/journal.pone.0044005 pmid: 22952851
[11] Wang X H, Bai J R, Liu H M, Sun Y, Shi X Y, Ren Z Q . Overexpression of a maize transcription factor ZmPHR1, improves shoot inorganic phosphate content and growth of Arabidopsis, under low-phosphate conditions. Plant Mol Biol Rep, 2013,31:665-677
doi: 10.1007/s11105-012-0534-3
[12] Nilsson L, Muller R, Nielsen T H . Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ, 2007,30:1499-1512
doi: 10.1111/j.1365-3040.2007.01734.x pmid: 17927693
[13] Liu F, Wang Z Y, Ren H Y, Shen C J, Li Y, Ling H Q, Wu C Y, Lian X M, Wu P . OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J, 2010,62:508-517
doi: 10.1111/j.1365-313X.2010.04170.x pmid: 20149131
[14] Ruan W Y, Guo M N, Cai L L, Hu H T, Li C Y, Liu Y, Wu Z C, Mao C Z, Yi K K, Wu P, Mo X R . Genetic manipulation of a high-affinity PHR1 target cis-element to improve phosphorous uptake in Oryza sativa L. Plant Mol Biol, 2015,87:429-440
doi: 10.1007/s11103-015-0289-y pmid: 25657119
[15] Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K R, Marsch-Martinez N, Krishnan A, Nataraja K N, Udayakumar M, Pereira A . Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA, 2007,104:15270-15275
doi: 10.1073/pnas.0707294104 pmid: 17881564
[16] Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K . Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech, 1999,17:287-291
doi: 10.1038/7036 pmid: 10096298
[17] Yamaguchi-Shinozaki K, Mino M, Mundy J, Chua N H . Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Mol Biol, 1990,15:905-912
doi: 10.1007/BF00039429 pmid: 2151733
[18] Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[19] Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998,16:735-743
[20] Jefferson R A, Kavanagh T A, Bevan M W . GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987,6:3901-3907
doi: 10.1089/dna.1987.6.583 pmid: 3327686
[21] Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254
doi: 10.1016/0003-2697(76)90527-3
[22] Xu L, Ye R, Zheng Y, Wang Z, Zhou P, Lin Y, Li D . Isolation of the endosperm-specific LPAAT gene promoter from coconut(Cocos nucifera L.) and its functional analysis in transgenic rice plants. Plant Cell Rep, 2010,29:1061-1068
doi: 10.1007/s00299-010-0892-y pmid: 20589378
[23] Rajeevan M S, Ranamukhaarachchi D G, Vernon S D, Unger E R . Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001,25:443-451
doi: 10.1006/meth.2001.1266 pmid: 11846613
[24] 孔佑宾, 李喜焕, 张彩英 . 大豆紫色酸性磷酸酶基因GmPAP4启动子结构与活性分析. 中国农业科学, 2017,50:582-590
Kong Y B, Li X H, Zhang C Y . Construction and activity analysis of the promoter of purple acid phosphatase gene GmPAP4 in soybean. Chin Agric Sci, 2017,50:582-590 (in Chinese with English abstract)
[25] Rai M, He C K, Wu R . Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice. Transgenic Res, 2009,18:787-799
doi: 10.1007/s11248-009-9263-2
[26] 邹郁陶, 刘鑫, 牟巍, 高学焕, 付凤玲, 李晚忱 . 玉米胚胎发生后期丰富蛋白基因的启动子克隆与功能验证. 西北植物学报, 2015,35:653-661
Zou Y T, Liu X, Mu W, Gao X H, Fu F L, Li W C . Cloning and functional validation of late embryogenesis abundant protein promoter from maize. Acta Bot Boreali-Occident Sin, 2015,35:653-661 (in Chinese with English abstract)
[27] 陈佳佳, 牟巍, 周树峰, 李晚忱, 付凤玲 . 玉米HVA22基因启动子的克隆与功能验证. 核农学报, 2014,28:560-568
Chen J J, Mu W, Zhou S F, Li W C, Fu F L . Cloning and functional validation of HVA22 gene promoter in maize. J Nucl Agric Sci, 2014,28:560-568 (in Chinese with English abstract)
[28] 高学焕, 付凤玲, 牟巍, 周树峰, 张素芝, 李晚忱 . 玉米钼辅助因子硫酸化酶基因启动子的克隆与功能验证. 遗传, 2014,36:584-591
Gao X H, Fu F L, Mu W, Zhou S F, Zhang S Z, Li W C . Cloning and functional validation of promoter of mo-molybdopterin cofactor sulfurase gene in maize. Hereditas ( Beijing), 2014,36:584-591 (in Chinese with English abstract)
[29] 张利娜, 刘瑜, 林拥军 . 水稻CDPK12基因启动子的表达模式及其逆境应答元件分析. 农业生物技术学报, 2015,23:1261-1272
Zhang L N, Liu Y, Lin Y J . Expression pattern and stress response elements analysis of CDPK12 gene promoter in rice(Oryza sativa ssp. japonica). J Agric Biol, 2015,23:1261-1272 (in Chinese with English abstract)
[30] 关涛, 怀宝玉, 郑佩晶, 李丹, 康振生, 刘杰 . 干旱胁迫下小麦葡萄糖-6-磷酸脱氢酶基因TaG6PDH1的表达特征及启动子分析. 麦类作物学报, 2015,35:1194-1201
doi: 10.7606/j.issn.1009-1041.2015.09.03
Guan T, Huai B Y, Zheng P J, Li D, Kang Z S, Liu J . Promoter analysis and characterization of a glucose-6-phosphate dehydrogenase gene TaG6PDH1 of wheat during drought stress. J Trit Crops, 2015,35:1194-1201 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2015.09.03
[31] 扆珩, 李昂, 刘惠民, 景蕊莲 . 小麦蛋白磷酸酶2A基因TaPP2AbB″-α启动子的克隆及表达分析. 作物学报, 2016,42:1282-1290
doi: 10.3724/SP.J.1006.2016.01282
Yi H, Li A, Liu H M, Jing R L . Cloning and expression analysis of protein phosphatase 2A gene TaPP2AbB″-α promoter in wheat. Acta Agron Sin, 2016,42:1282-1290 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01282
[32] 裴柳玲, 唐清, 张涛, 赵云龙, 林书岱, 孙杰, 刘永昌 . 水稻胁迫相关基因 OsPM1启动子的克隆与分析. 西北植物学报, 2015,35:2179-2184
Pei L L, Tang Q, Zhang T, Zhao Y L, Lin S D, Sun J, Liu Y C . Cloning and analysis of promoter of stress-related gene OsPM1 from Oryza sativa. Acta Bot Boreali-Occident Sin, 2015,35:2179-2184 (in Chinese with English abstract)
[33] Yang G Z, Du H Y, Xu H, Ding G D, Xu F S . Identification of phosphate-starvation-inducible gene BnIPS1, in Brassica napus. Acta Physiol Plant, 2013,35:2085-2094 (in Chinese with English abstract)
doi: 10.1007/s11738-013-1243-8
[34] 马骏骏, 柳展基, 李菲, 王立国, 傅明川, 朱新霞, 刘任重 . 棉花转录因子GhSNAC3启动子的克隆与表达分析. 华北农学报, 2016,31(5):35-43
doi: 10.7668/hbnxb.2016.05.006
Ma J J, Liu Z J, Li F, Wang L G, Fu M C, Zhu X X, Liu R Z . The cloning and expression analysis of transcription factor GhSNAC3 promoter in cotton. Acta Agric Boreali Sin, 2016,31(5):35-43 (in Chinese with English abstract)
doi: 10.7668/hbnxb.2016.05.006
[35] Zhu W, Zhang D, Lu X, Zhang L, Yu Z, Lu H, Zhang H M . Characterisation of an SKn-type dehydrin promoter from wheat and its responsiveness to various abiotic and biotic stresses. Plant Mol Biol Rep, 2014,32:664-678
doi: 10.1007/s11105-013-0681-1
[36] 杜皓, 丁林云, 何曼林, 蔡彩平, 郭旺珍 . 受多逆境诱导表达的GhWRKY64基因启动子克隆与功能分析. 作物学报, 2015,41:593-600
Du H, Ding L Y, He M L, Cai C P, Guo W Z . Cloning and functional identification of promoter region of GhWRKY64 induced by multi-stresses in cotton(Gossypium hirsutum). Acta Agron Sin, 2015,41:593-600 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!