欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (8): 1127-1135.doi: 10.3724/SP.J.1006.2018.01127

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米雄穗分枝数主效QTL定位及qTBN5近等基因系构建

代资举1(),王新涛1,杨青1,王艳1,张莹莹1,席章营2,李保全1,*()   

  1. 1 河南省农业科学院作物设计中心, 河南郑州 450002
    2 河南农业大学农学院 / 河南省粮食作物协同创新中心, 河南郑州 450002
  • 收稿日期:2017-12-20 接受日期:2018-06-09 出版日期:2018-08-10 网络出版日期:2018-06-09
  • 通讯作者: 李保全
  • 基金资助:
    本研究由河南省重大科技专项(161100110500);河南省农业科学院科研发展专项(YNK20177514);河南省农业科学院科研发展专项(YNK201710605)

Major Quantitative Trait Loci Mapping for Tassel Branch Number and Construction of qTBN5 Near-isogenic Lines in Maize (Zea mays L.)

Zi-Ju DAI1(),Xin-Tao WANG1,Qing YANG1,Yan WANG1,Ying-Ying ZHANG1,Zhang-Ying XI2,Bao-Quan LI1,*()   

  1. 1 Crop Designing Centre, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2 College of Agronomy, Henan Agricultural University / Collaborative Innovation Center of Henan Food Crops, Zhengzhou 450002, Henan, China
  • Received:2017-12-20 Accepted:2018-06-09 Published:2018-08-10 Published online:2018-06-09
  • Contact: Bao-Quan LI
  • Supported by:
    This study was supported by the Henan Major Science and Technology Project(161100110500);the Special Fund for Scientific Research and Development of Henan Academy of Agricultural Sciences(YNK20177514);the Special Fund for Scientific Research and Development of Henan Academy of Agricultural Sciences(YNK201710605)

摘要:

立足于发掘玉米雄穗分枝数优异基因资源, 利用郑单958骨干亲本郑58和昌7-2构建的188个重组自交系(recombinant inbred line, RIL)家系群体, 结合288个多态性分子标记构建的连锁图谱和2年玉米雄穗分枝数表型数据, 运用完备复合区间作图法进行QTL定位, 共检测到5个控制玉米雄穗分枝数的一致性主效QTL, 分别位于玉米5条染色体上。通过连续回交及分子标记辅助选择构建了位于bin 5.05的控制雄穗分枝数主效QTL-qTBN5近等基因系(near isogenic line, NIL), 对基因遗传效应进行了验证, 并将qTBN5进一步定位在13.2 Mb区间之内, 为玉米雄穗分枝数主效基因的精细定位及分子育种奠定基础。

关键词: 玉米, 雄穗分枝数, QTL定位, 近等基因系

Abstract:

Tassel branch number (TBN) is a principal component of maize tassel-related traits important for modern maize breeding and production. To understand the genetic basis of tassel branch number, we adopted 288 markers exhibiting polymorphisms between Zheng 58 and Chang 7-2 to construct the genetic linkage map, and conduct quantitative trait loci (QTLs) analysis using sets of 188 recombinant inbred line (RIL) families derived from the elite maize inbred lines vz. Zheng 58 × Chang 7-2. Five major QTLs controlling tassel branch number within five different chromosomes respectively were validated by using the inclusive composite interval mapping method (ICIM) based on phenotypic data collected in two years. Because qTBN5 located on chromosome bin 5.05 was found to be an important QTL, qTBN5 near-isogenic lines (qTBN5-NILs) were developed by backcrossing and marker-assisted selection, and qTBN5 was further mapped in 13.2 Mb intervals. These findings will advance our understanding of the inheritance basis of TBN, and also facilitate the fine mapping and molecular breeding programs in maize.

Key words: maize, tassel branch number, quantitative trait loci mapping, near-isogenic lines

图1

qTBN5-NILs的构建流程"

表1

亲本及RIL家系在两年环境下的雄穗分枝数的表型分析"

年份
Year
郑58
Zheng 58
昌7-2
Chang 7-2
均值
Average
范围
Range
变异系数
Variation coefficient (%)
2015 4.6 17.8 10.7 2.4-22.6 43.60
2016 4.4 17.2 11.2 2.8-21.4 38.83

图2

RIL家系雄穗分枝数频次分布"

图3

雄穗分枝数性状主效QTL在标记连锁图上的位置 连锁图上左边数字表示标记在B73 RefGen-v3基因组序列图谱上的物理位置。"

表2

玉米雄穗分枝数主效QTL及其遗传效应"

QTL 染色体
Chromosome
物理区间
Position (Mb)
标记区间
Marker interval
LOD 加性效应
Additive effect
贡献率
R2 (%)
qTBN3 3 146.7-175.5 umc1954-bnlg1798 5.06 1.40 13.67
qTBN4 4 169.2-186.7 bnlg2291-umc2041 3.15 -1.01 5.81
qTBN5 5 170.1-200.2 umc2111-bnlg278 9.58 1.88 19.92
qTBN7 7 29.4-83.2 bnlg2233-bnlg1380 4.65 -0.82 16.53
qTBN10 10 127.3-145.5 umc2003-phi323152 6.11 -1.73 9.06

图4

qTBN5-NILs的基因型和表型效应 a: 雄穗分枝数主效基因qTBN5的定位; b: qTBN5-NILs的基因型, 白色为郑58背景, 黑色部分为来自昌7-2的qTBN5基因所在片段; c: 雄穗分枝数; d: 株高; e: 穗位高; f: 抽雄期; g: 雄穗主轴长。**表示在 0.01水平差异显著, ns表示差异不显著。"

图5

qTBN5进一步定位及连锁标记开发 a: 交换株代换作图定位qTBN5, L1为昌7-2, L5为郑58, L2~L4为重组株, **表示在 0.01水平差异显著; b: 标记检测郑58和昌7-2及BC1F2世代部分单株基因型, 红色M13为通用引物序列。"

[1] Geraldi I O, Miranda Filho J B, Vencovsky R . Estimates of genetic parameters for tassel characters in maize (Zea mays L.) and breeding perspectives. Maydica, 1985,30:1-14
[2] Upadyayula N, Silva H S, Bohn M O, Rocheford T . Genetic and QTL analysis of maize tassel and inforescence architecture. Theor Appl Genet, 2006,112:592-606
doi: 10.1007/s00122-005-0133-x pmid: 16395569
[3] Gue R, Wasson C . Genetic analysis of tassel size and leaf senescence and their relationship with yield in two tropical low land maize populations. Afr Crop Sci J, 1996,4:275-281
[4] Berke T, Rocheford T . Quantitative trait loci for tassel traits in maize. Crop Sci, 1999,39:1439-1443
doi: 10.2135/cropsci1999.3951439x
[5] Mickelson S M, Stuber C S, Senior L, Kaeppler S M . Quantitative trait loci controlling leaf and tassel traits in a B73lMo17 population of maize. Crop Sci, 2002,42:1902-1909
doi: 10.2135/cropsci2002.1902
[6] 汤华, 严建兵, 黄益勤, 郑用琏, 李建生 . 玉米5个农艺性状的QTL定位. 遗传学报, 2005,32:203-209
Tang H, Yan J B, Huang Y Q, Zheng Y L, Li J S . QTL mapping of five agronomic traits in maize. Acta Genet Sin, 2005,32:203-209 (in Chinese with English abstract)
[7] Upadyayula N, Silva H S, Bohn M O, Rocheford T . Genetic and QTL analysis of maize tassel and inforescence architecture. Theor Appl Genet, 2006,112:592-606
doi: 10.1007/s00122-005-0133-x pmid: 16395569
[8] 高世斌, 赵茂俊, 兰海, 张志明 . 玉米雄穗分枝数与主轴长的QTL鉴定. 遗传, 2007,29:1013-1017
doi: 10.3321/j.issn:0253-9772.2007.08.019
Gao S B, Zhao M J, Lan H, Zhang Z M . Identification of QTL associated with tassel branch number and total tassel length in maize. Hereditas (Beijing), 2007,29:1013-1017 (in Chinese with English abstract)
doi: 10.3321/j.issn:0253-9772.2007.08.019
[9] 王迪, 李永祥, 王阳, 刘成, 刘志斋, 彭勃, 谭巍巍, 张岩, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕 . 控制玉米雄穗分枝数目和雄穗重的主效QTL的定位. 植物学报, 2001,46:11-20
doi: 10.3724/SP.J.1259.2011.00011
Wang D, Li Y X, Wang Y, Liu C, Liu Z Z, Peng B, Tan W W, Zhang Y, Sun B C, Shi Y S, Song Y C, Wang T Y, Li Y . Major quantitative trait loci analysis of tassel primary branch number and tassel weight in maize(Zea mays L.). Chin Bull Bot, 46:11-20 (in Chinese with English abstract)
doi: 10.3724/SP.J.1259.2011.00011
[10] Brown P J, Upadyayula N, Mahone G S, Tian F, Bradbury P J, Myles S, Holland J B, Flint-Garcia S, McMullen M M, Buckler E S, Rocheford T R . Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet, 2011,7(11):e1002383
doi: 10.1371/journal.pgen.1002383 pmid: 3219606
[11] 杨钊钊, 李永祥, 刘成, 刘志斋, 李春辉, 李清超, 彭勃, 张岩, 王迪, 谭巍巍, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕 . 基于多个相关群体的玉米雄穗相关性状QTL分析. 作物学报, 2012,38:1435-1442
Yang Z Z, Li Y X, Liu C, Liu Z Z, Li C H, Li Q C, Peng B, Zhang Y, Wang D, Tan W W, Sun B C, Shi Y S, Song Y C, Wang T Y, Li Y . QTL analysis of tassel-related traits in maize (Zea mays L.) using multiple connected populations. Acta Agron Sin, 2012,38:1435-1442 (in Chinese with English abstract)
[12] Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S . An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014,15:433
doi: 10.1186/1471-2164-15-433
[13] Wu X, Li Y X, Shi Y S, Song Y C, Zhang D F, Li C H, Buckler E S, Li Y, Zhang Z W, Wang T Y . Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol J, 2016,14:1551-1562
doi: 10.1111/pbi.2016.14.issue-7
[14] Xu G H, Wang X F, Huang C, Xu D Y, Li D, Tian J G, Chen Q Y, Wang C L, Liang Y M, Wu Y Y, Yang X H, Tian F . Complex genetic architecture underlies maize tassel domestication. New Phytol, 2017,214:852-864
doi: 10.1111/nph.14400 pmid: 28067953
[15] Vollbrecht E, Springer P S, Goh L, Buckler E S, Martienssen R . Architecture of floral branch systems in maize and related grasses. Nature, 2005,436:1119-1126
doi: 10.1038/nature03892 pmid: 16041362
[16] Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D . A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature, 2006,441:227-230
doi: 10.1038/nature04725 pmid: 16688177
[17] Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S . ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell, 2006,18:574-585
[18] Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pè M E, Schmidt R J . The role of barren stalk1 in the architecture of maize. Nature, 2004,432:630-635
[19] Walsh J, Freeling M . The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. Plant J, 1999,19:489-495
[20] Skirpan A, Culler A H, Gallavotti A, Jackson D, Cohen J D, McSteen P . BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development. Plant Cell Physiol, 2009,50:652-657
doi: 10.1093/pcp/pcp006
[21] Chuck G, Brown P, Meeley R, Hake S . Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci USA, 2014,111:18775-18780
[22] Lander E S, Green P, Abranhanson J, Barlow A, Daley M, Lincoln S, Newburg L . MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181
doi: 10.1016/0888-7543(87)90010-3
[23] Meng L, Li H H, Zhang L Y, Wang J K . QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. Crop J, 2015,3:169-173
doi: 10.1016/j.cj.2015.05.001
[24] Brewbaker J L . Diversity and genetics of tassel branch numbers in maize. Crop Sci, 2015,55:65-78
doi: 10.2135/cropsci2014.03.0248
[25] Briggs W H, McMullen M D, Gaut B S, Doebley J . Linkage mapping of domestication loci in a large maize-teosinte backcross resource. Genetics, 2007,177:1915-1928
doi: 10.1534/genetics.107.076497 pmid: 17947434
[26] Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A . Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breed Sci, 2002, 52: 319-325
[27] Chen Z J, Yang C, Tang D G, Zhang L, Zhang L, Qu J T, Liu J . Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize. J Integr Agric, 2017,16:1432-1442
doi: 10.1016/S2095-3119(16)61538-1
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!