作物学报 ›› 2018, Vol. 44 ›› Issue (8): 1127-1135.doi: 10.3724/SP.J.1006.2018.01127
代资举1(),王新涛1,杨青1,王艳1,张莹莹1,席章营2,李保全1,*()
Zi-Ju DAI1(),Xin-Tao WANG1,Qing YANG1,Yan WANG1,Ying-Ying ZHANG1,Zhang-Ying XI2,Bao-Quan LI1,*()
摘要:
立足于发掘玉米雄穗分枝数优异基因资源, 利用郑单958骨干亲本郑58和昌7-2构建的188个重组自交系(recombinant inbred line, RIL)家系群体, 结合288个多态性分子标记构建的连锁图谱和2年玉米雄穗分枝数表型数据, 运用完备复合区间作图法进行QTL定位, 共检测到5个控制玉米雄穗分枝数的一致性主效QTL, 分别位于玉米5条染色体上。通过连续回交及分子标记辅助选择构建了位于bin 5.05的控制雄穗分枝数主效QTL-qTBN5近等基因系(near isogenic line, NIL), 对基因遗传效应进行了验证, 并将qTBN5进一步定位在13.2 Mb区间之内, 为玉米雄穗分枝数主效基因的精细定位及分子育种奠定基础。
[1] | Geraldi I O, Miranda Filho J B, Vencovsky R . Estimates of genetic parameters for tassel characters in maize (Zea mays L.) and breeding perspectives. Maydica, 1985,30:1-14 |
[2] |
Upadyayula N, Silva H S, Bohn M O, Rocheford T . Genetic and QTL analysis of maize tassel and inforescence architecture. Theor Appl Genet, 2006,112:592-606
doi: 10.1007/s00122-005-0133-x pmid: 16395569 |
[3] | Gue R, Wasson C . Genetic analysis of tassel size and leaf senescence and their relationship with yield in two tropical low land maize populations. Afr Crop Sci J, 1996,4:275-281 |
[4] |
Berke T, Rocheford T . Quantitative trait loci for tassel traits in maize. Crop Sci, 1999,39:1439-1443
doi: 10.2135/cropsci1999.3951439x |
[5] |
Mickelson S M, Stuber C S, Senior L, Kaeppler S M . Quantitative trait loci controlling leaf and tassel traits in a B73lMo17 population of maize. Crop Sci, 2002,42:1902-1909
doi: 10.2135/cropsci2002.1902 |
[6] | 汤华, 严建兵, 黄益勤, 郑用琏, 李建生 . 玉米5个农艺性状的QTL定位. 遗传学报, 2005,32:203-209 |
Tang H, Yan J B, Huang Y Q, Zheng Y L, Li J S . QTL mapping of five agronomic traits in maize. Acta Genet Sin, 2005,32:203-209 (in Chinese with English abstract) | |
[7] |
Upadyayula N, Silva H S, Bohn M O, Rocheford T . Genetic and QTL analysis of maize tassel and inforescence architecture. Theor Appl Genet, 2006,112:592-606
doi: 10.1007/s00122-005-0133-x pmid: 16395569 |
[8] |
高世斌, 赵茂俊, 兰海, 张志明 . 玉米雄穗分枝数与主轴长的QTL鉴定. 遗传, 2007,29:1013-1017
doi: 10.3321/j.issn:0253-9772.2007.08.019 |
Gao S B, Zhao M J, Lan H, Zhang Z M . Identification of QTL associated with tassel branch number and total tassel length in maize. Hereditas (Beijing), 2007,29:1013-1017 (in Chinese with English abstract)
doi: 10.3321/j.issn:0253-9772.2007.08.019 |
|
[9] |
王迪, 李永祥, 王阳, 刘成, 刘志斋, 彭勃, 谭巍巍, 张岩, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕 . 控制玉米雄穗分枝数目和雄穗重的主效QTL的定位. 植物学报, 2001,46:11-20
doi: 10.3724/SP.J.1259.2011.00011 |
Wang D, Li Y X, Wang Y, Liu C, Liu Z Z, Peng B, Tan W W, Zhang Y, Sun B C, Shi Y S, Song Y C, Wang T Y, Li Y . Major quantitative trait loci analysis of tassel primary branch number and tassel weight in maize(Zea mays L.). Chin Bull Bot, 46:11-20 (in Chinese with English abstract)
doi: 10.3724/SP.J.1259.2011.00011 |
|
[10] |
Brown P J, Upadyayula N, Mahone G S, Tian F, Bradbury P J, Myles S, Holland J B, Flint-Garcia S, McMullen M M, Buckler E S, Rocheford T R . Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet, 2011,7(11):e1002383
doi: 10.1371/journal.pgen.1002383 pmid: 3219606 |
[11] | 杨钊钊, 李永祥, 刘成, 刘志斋, 李春辉, 李清超, 彭勃, 张岩, 王迪, 谭巍巍, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕 . 基于多个相关群体的玉米雄穗相关性状QTL分析. 作物学报, 2012,38:1435-1442 |
Yang Z Z, Li Y X, Liu C, Liu Z Z, Li C H, Li Q C, Peng B, Zhang Y, Wang D, Tan W W, Sun B C, Shi Y S, Song Y C, Wang T Y, Li Y . QTL analysis of tassel-related traits in maize (Zea mays L.) using multiple connected populations. Acta Agron Sin, 2012,38:1435-1442 (in Chinese with English abstract) | |
[12] |
Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S . An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014,15:433
doi: 10.1186/1471-2164-15-433 |
[13] |
Wu X, Li Y X, Shi Y S, Song Y C, Zhang D F, Li C H, Buckler E S, Li Y, Zhang Z W, Wang T Y . Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol J, 2016,14:1551-1562
doi: 10.1111/pbi.2016.14.issue-7 |
[14] |
Xu G H, Wang X F, Huang C, Xu D Y, Li D, Tian J G, Chen Q Y, Wang C L, Liang Y M, Wu Y Y, Yang X H, Tian F . Complex genetic architecture underlies maize tassel domestication. New Phytol, 2017,214:852-864
doi: 10.1111/nph.14400 pmid: 28067953 |
[15] |
Vollbrecht E, Springer P S, Goh L, Buckler E S, Martienssen R . Architecture of floral branch systems in maize and related grasses. Nature, 2005,436:1119-1126
doi: 10.1038/nature03892 pmid: 16041362 |
[16] |
Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D . A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature, 2006,441:227-230
doi: 10.1038/nature04725 pmid: 16688177 |
[17] | Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S . ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell, 2006,18:574-585 |
[18] | Gallavotti A, Zhao Q, Kyozuka J, Meeley R B, Ritter M K, Doebley J F, Pè M E, Schmidt R J . The role of barren stalk1 in the architecture of maize. Nature, 2004,432:630-635 |
[19] | Walsh J, Freeling M . The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. Plant J, 1999,19:489-495 |
[20] |
Skirpan A, Culler A H, Gallavotti A, Jackson D, Cohen J D, McSteen P . BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development. Plant Cell Physiol, 2009,50:652-657
doi: 10.1093/pcp/pcp006 |
[21] | Chuck G, Brown P, Meeley R, Hake S . Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci USA, 2014,111:18775-18780 |
[22] |
Lander E S, Green P, Abranhanson J, Barlow A, Daley M, Lincoln S, Newburg L . MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181
doi: 10.1016/0888-7543(87)90010-3 |
[23] |
Meng L, Li H H, Zhang L Y, Wang J K . QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. Crop J, 2015,3:169-173
doi: 10.1016/j.cj.2015.05.001 |
[24] |
Brewbaker J L . Diversity and genetics of tassel branch numbers in maize. Crop Sci, 2015,55:65-78
doi: 10.2135/cropsci2014.03.0248 |
[25] |
Briggs W H, McMullen M D, Gaut B S, Doebley J . Linkage mapping of domestication loci in a large maize-teosinte backcross resource. Genetics, 2007,177:1915-1928
doi: 10.1534/genetics.107.076497 pmid: 17947434 |
[26] | Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A . Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breed Sci, 2002, 52: 319-325 |
[27] |
Chen Z J, Yang C, Tang D G, Zhang L, Zhang L, Qu J T, Liu J . Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize. J Integr Agric, 2017,16:1432-1442
doi: 10.1016/S2095-3119(16)61538-1 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[9] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[10] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[11] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[12] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[13] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[14] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[15] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
|