作物学报 ›› 2019, Vol. 45 ›› Issue (2): 204-213.doi: 10.3724/SP.J.1006.2019.84085
摘要:
光敏色素互作因子4 (phytochrome interacting factor 4, PIF4)是光信号途径关键转录因子, PIF4与BZR互作介导光信号与油菜素内酯信号互作, 参与植物光响应。本文在甘蓝型油菜湘油15号中克隆到2个PIF4基因, 分别定位于A03号染色体和C03号染色体, 命名为BnaPIF4_A03和BnaPIF4_C03, 全长编码序列(coding sequence, CDS)、全长mRNA和全长基因分别为1242 bp和1245 bp、1701 bp和1731 bp、2527 bp和2665 bp, 各自编码413和414个氨基酸。BnaPIF4_A03具有7个外显子和6个内含子, BnaPIF4_C03具有8个外显子和7个内含子, 与测序品种中双11号相比, BnaPIF4_A03基因第1内含子存在单碱基插入突变, 第4和第6内含子存在缺失突变, 且具有更长的3'-UTR, 两基因其他序列在湘油15号和中双11号之间无差别。BnaPIF4_A03和BnaPIF4_C03基因编码蛋白具有典型的植物bHLH结构域, 亚细胞定位于细胞核, 是典型的植物PIF4蛋白。多序列比对和进化分析表明, BnaPIF4蛋白与白菜、拟南芥、亚麻芥等PIF4蛋白高度同源。PIF4蛋白进化关系与物种进化关系一致, 近缘物种中的PIF4蛋白在进化树中高度聚类, 大量植物中可见PIF4蛋白重复且低等植物中分化程度明显低于高等植物中, 表明PIF4蛋白是一个晚期进化事件且可能存在功能冗余。酵母杂交实验表明BnaPIF4与BnaBZR蛋白存在互作, 但BnaPIF4不能与BnaBZR基因的启动子互作, 表明BnaPIF4与BnaBZR在蛋白水平而非转录水平发生互作。湘油15号中BnaPIF4_A03和BnaPIF4_C03基因表达规律一致, BnaPIF4基因主要表达于油菜茎表皮、未成熟角果和叶中, 在花和根中表达较低, 且其表达随油菜生育进程逐渐降低。
[1] |
卢坤, 申鸽子, 梁颖, 符明联, 贺斌, 铁琳梅, 张烨, 彭柳, 李加纳 . 适合不同产量的环境下油菜高收获指数的产量构成因素分析. 作物学报, 2017,43:82-96.
doi: 10.3724/SP.J.1006.2017.00082 |
Lu K, Shen G Z, Liang Y, Fu M L, He B, Tie L M, Zhang Y, Peng L, Li J N . Analysis of yield components with high harvest index in Brassica napus under environments fitting different yield levels. Acta Agron Sin, 2017,43:82-96 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00082 |
|
[2] | Irfan M, Alam J, Ahmad I, Ali I, Gul H . Effects of exogenous and foliar applications of brassinosteroid (BRs) and salt stress on the growth, yield and physiological parameters of Lycopersicon esculentum(Mill.). Plant Sci Today, 2017,4:88-101. |
[3] |
Thussagunpanit J, Jutamanee K, Kaveeta L, Chaiarree W, Pankean P, Homvisasevongsa S, Suksamrarn A . Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul, 2015,34:320-331.
doi: 10.1007/s00344-014-9467-4 |
[4] |
Sahni S, Prasad B D, Liu Q, Grbic V, Sharpe A, Singh S P, Krishna P . Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep, 2016,6:28298.
doi: 10.1038/srep28298 pmid: 4915011 |
[5] |
Oh E, Zhu J Y, Wang Z Y . Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol, 2012,14:802-809.
doi: 10.1038/ncb2545 pmid: 22820378 |
[6] | 杨剑飞, 王宇, 杨琳, 李玉花 . 光敏色素互作因子 PIFs 是整合多种信号调控植物生长发育的核心元件. 植物生理学报, 2014,50:1109-1118. |
Yang J F, Wang Y, Yang L, Li Y H . Phytochrome-interacting factors integrate multiple signals to control plant growth and development. Plant Physiol J, 2014,50:1109-1118 (in Chinese with English abstract). | |
[7] |
Huq E, Quail P H . PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J, 2002,21:2441-2450.
doi: 10.1093/emboj/21.10.2441 pmid: 12006496 |
[8] |
Castillon A, Shen H, Huq E . Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci, 2007,12:514-521.
doi: 10.1016/j.tplants.2007.10.001 |
[9] |
Casson S A, Franklin K A, Gray J E, Grierson C S, Whitelam G C, Hetherington A M . Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol, 2009,19:229-234.
doi: 10.1016/j.cub.2008.12.046 pmid: 19185498 |
[10] |
Koini M A, Alvey L, Allen T, Tilley C A, Harberd N P, Whitelam G C, Franklin K A . High temperature-mediated adaptations inplant architecture require the bHLH transcription factor PIF4. Curr Biol, 2009,19:408-413.
doi: 10.1016/j.cub.2009.01.046 pmid: 19249207 |
[11] |
Franklin K A, Lee S H, Patel D, Kumar S V, Spartz A K, Gu C, Wigge P A . Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA, 2011,108:20231-20235.
doi: 10.1073/pnas.1110682108 |
[12] |
Xu H, Liu Q, Yao T, Fu X . Shedding light on integrative GA signaling. Curr Opin Plant Biol, 2014,21:89-95.
doi: 10.1016/j.pbi.2014.06.010 pmid: 25061896 |
[13] |
Bernardo-García S, Lucas M, Martínez C, Espinosa-Ruiz A, Davière J M, Prat S . BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev, 2014,28:1681-1694.
doi: 10.1101/gad.243675.114 pmid: 25085420 |
[14] |
韩霜, 陈素梅, 蒋甲福, 房伟民, 管志勇, 陈发棣 . 弱光下菊花‘清露’的激素水平及相关基因表达. 中国农业科学, 2015,48:324-333.
doi: 10.3864/j.issn.0578-1752.2015.02.12 |
Han S, Chen S M, Jiang J F, Fang W M, Guan Z Y, Chen F T . Hormone levels and gene expression analysis of chrysanthemum cultivar ‘puma sunny’ under low light intensity. Sci Agric Sin, 2015,48:324-333 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.02.12 |
|
[15] | Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Corréa M . Early allopolyploid evolution in the post- Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953. |
[16] |
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez Gacía J F, Bilbao-Castro J R, Robertson D L . Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol, 2010,153:1398-1412.
doi: 10.1104/pp.110.153593 pmid: 20472752 |
[17] |
Feller A, Machemer K, Braun E L, Grotewold E . Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011,66:94-116.
doi: 10.1111/j.1365-313X.2010.04459.x pmid: 21443626 |
[18] | Surhone L M, Timpledon M T, Marseken S F. Rapeseed. Germany: Betascript Publishing, 2010. pp 6-8. |
[19] |
Kumar S V, Lucyshyn D, Jaeger K E, Alós E, Alvey E, Harberd N P, Wigge P A . Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012,484:242-245.
doi: 10.1038/nature10928 pmid: 22437497 |
[20] |
Lucas M, Prat S . PIFs get BR right: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytol, 2014,202:1126-1141.
doi: 10.1111/nph.12725 pmid: 24571056 |
[21] |
Choi H, Oh E . PIF4 integrates multiple environmental and hormonal signals for plant growth regulation in Arabidopsis. Mol Cell, 2016,39:587-593.
doi: 10.14348/molcells.2016.0126 pmid: 4990750 |
[22] |
Wei Z, Yuan T, Tarkowská D, Kim J, Nam H G, Novák O, Li J . Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4 and PIF5. Plant Physiol, 2017,174:1260-1273.
doi: 10.1104/pp.16.01778 pmid: 28438793 |
[23] |
Wang Z Y, Nakano T, Gendron J, He J, Chen M, Vafeados D, Chory J . Nuclear-localized BZR1 mediates brassinosteroid- induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell, 2002,2:505-513.
doi: 10.1016/S1534-5807(02)00153-3 pmid: 11970900 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[5] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[6] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[9] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[11] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[12] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[13] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[14] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|