作物学报 ›› 2019, Vol. 45 ›› Issue (9): 1327-1337.doi: 10.3724/SP.J.1006.2019.82069
ZHANG Shuang-Shuang,WANG Li-Wei,YAO Nan,GUO Guang-Yan,XIA Yu-Feng,BI Cai-Li()
摘要:
自噬是将功能异常或不需要的胞内组分降解的细胞学过程, 广泛参与真核生物的生长发育过程、对营养缺乏的响应及生物/非生物胁迫反应。NBR1 (Next to BRCA1 gene 1, NBR1)是在植物中发现的最重要的自噬受体, 但有关植物NBR1类自噬受体的研究较少, 水稻中此类蛋白的研究还是空白。本文通过RT-PCR方法, 从水稻日本晴幼苗的 cDNA中克隆到一个含有泛素相关结构域(Ubiquitin associated, UBA)的基因,将其命名为OsUBA。OsUBA的开放阅读框长2538 bp, 编码845个氨基酸残基。OsUBA属于水稻中的NBR1类蛋白。OsUBA的启动子区有多个与光、逆境胁迫及激素反应相关的元件; OsUBA基因在水稻花药、正在萌发的种子以及根中的表达量较高,在茎和叶中也有表达; 200 μmol L -1ABA处理显著抑制OsUBA的表达, 100 μmol L -1 GA处理后OsUBA的表达略有升高。对OsUBA过表达水稻株系的研究表明, 转基因水稻种子的萌发比野生型更快, ABA (3 μmol L -1)处理显著抑制OsUBA过表达水稻株系种子的萌发, GA (100 μmol L -1)处理对OsUBA过表达水稻株系种子的萌发略有促进; OsUBA过表达水稻株系的开花时间较野生型明显提前。这些结果表明, 水稻NBR1蛋白基因OsUBA的表达和功能可能与对开花时间和种子萌发的调控以及生物/非生物胁迫反应有关。
[1] | Yoshimoto K . Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol, 2012,53:1355-1365. |
[2] | Bassham D C . Plant autophagy: more than a starvation response. Curr Opin Plant Biol, 2007,10:587-593. |
[3] | Johansen T, Lamark T . Selective autophagy mediated by autophagic adapter proteins. Autophagy, 2011,7:279-296. |
[4] | Lamark T, Kirkin V, Dikic I, Johansen T . NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle, 2009,8:1986-1990. |
[5] | Kirkin V, Lamark T, Sou Y S, Bjørkøy G, Nunn J L, Bruun J A, Shvets E, McEwan D G, Clausen T H, Wild P, Bilusic I, Theurillat J P, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T . A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell, 2009,33:505-516. |
[6] | Katsuragi Y, Ichimura Y, Komatsu M . p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J, 2015,282:4672-4678. |
[7] | Waters S, Marchbank K, Solomon E, Whitehouse C, Gautel M . Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover. FEBS Lett, 2009,583:1846-1852. |
[8] | Svenning S, Lamark T, Krause K, Johansen T . Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy, 2011,7:993-1010. |
[9] | Zhou J, Wang J, Cheng Y, Chi Y J, Fan B, Yu J Q, Chen Z . NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet, 2013,9:e1003196. |
[10] | Zientara-Rytter K, Lukomska J, Moniuszko G, Gwozdecki R, Surowiecki P, Lewandowska M, Liszewska F, Wawrzyńska A, Sirko A . Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy, 2011,7:1145-1158. |
[11] | Zientara-Rytter K, Sirko A . Significant role of PB1 and UBA domains in multimerization of Joka2, a selective autophagy cargo receptor from tobacco. Front Plant Sci, 2014,5:13. |
[12] | Dagdas Y F, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, Tabassum N, Cruz-Mireles N, Hughes R K, Sklenar J, Win J, Menke F, Findlay K, Banfield M J, Kamoun S, Bozkurt T O . An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife, 2016,14:5. |
[13] | Li X, Zhang S, Ma J, Guo G, Zhang X, Liu X, Bi C . TaUBA, a UBA domain-containing protein in wheat (Triticum aestivum L.), is a negative regulator of salt and drought stress response in transgenic Arabidopsis. Plant Cell Rep, 2015,34:755-766. |
[14] | Lescot M, Déhais P, Moreau Y, De Moor B, Rouzé P, Rombauts S . PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002,30:325-327. |
[15] | Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P . OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008, 146:1673-1686. |
[16] | Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt method. Methods, 2001,25:402-408. |
[17] | 孔德艳, 陈守俊, 周立国, 高欢, 罗利军, 刘灶长 . 水稻开花光周期调控相关基因研究进展. 遗传, 2016,38:532-542. |
Kong D Y, Chen S J, Zhou L G, Gao H, Luo L J, Liu Z C . Research progress of photoperiod regulated genes on flowering time in rice. Hereditas (Beijing), 2016,38:532-542 (in Chinese with English abstract). | |
[18] | Li L, Li X, Liu Y, Liu H . Flowering responses to light and temperature. Sci China Life Sci, 2016,59:403-408. |
[19] | Song Y H, Ito S, Imaizumi T . Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci, 2013,18:575-583. |
[20] | Gangappa S N, Maurya J P, Yadav V, Chattopadhyay S . The regulation of the Z- and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis. PLoS One, 2013,8:e62194. |
[21] | Jiao Y, Lau O S, Deng X W . Light-regulated transcriptional networks in higher plants. Nat Rev Genet, 2007,8:217-230. |
[22] | Harrison-Lowe N J, Olsen L J . Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy, 2008,4:339-348. |
[23] | Kurusu T, Koyano T, Kitahata N, Kojima M, Hanamata S, Sakakibara H, Kuchitsu K . Autophagy-mediated regulation of phytohormone metabolism during rice anther development. Plant Signal Behav, 2017,12:e1365211. |
[24] | Kurusu T, Koyano T, Hanamata S, Kubo T, Noguchi Y, Yagi C, Nagata N, Yamamoto T, Ohnishi T, Okazaki Y, Kitahata N, Ando D, Ishikawa M, Wada S, Miyao A, Hirochika H, Shimada H, Makino A, Saito K, Ishida H, Kinoshita T, Kurata N, Kuchitsu K . OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy, 2014,10:878-888. |
[25] | North H, Baud S, Debeaujon I, Dubos C, Dubreucq B, Grappin P, Jullien M, Lepiniec L, Marion-Poll A, Miquel M, Rajjou L, Routaboul J M, Caboche M . Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research. Plant J, 2010,61:971-981. |
[26] | Salem M A, Li Y, Wiszniewski A, Giavalisco P . Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. Plant J, 2017,92:525-545. |
[27] | Shu K, Liu X D, Xie Q, He Z H . Two faces of one seed: Hormonal regulation of dormancy and germination. Mol Plant, 2016,9:34-45. |
[28] | Steinbrecher T, Leubner-Metzger G . The biomechanics of seed germination. J Exp Bot, 2017,68:765-783. |
[29] | 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉 . 种子萌发及其调控的研究进展. 作物学报, 2014,40:1141-1156. |
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q . Research progress in seed germination and its control. Acta Agron Sin, 2014,40:1141-1156 (in Chinese with English abstract). | |
[30] | 伍静辉, 谢楚萍, 田长恩, 周玉萍 . 脱落酸调控种子休眠和萌发的分子机制. 植物学报, 2018,53:542-555. |
Wu J H, Xie C P, Tian C E, Zhou Y P . Molecular mechanism of abscisic acid regulation during seed dormancy and germination. Chin Bull Bot, 2018,53:542-555 (in Chinese with English abstract). | |
[31] | Kucera B, Cohn M A, Leubner-Metzger G L . Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005,15:282-307. |
[32] | Honig A, Avin-Wittenberg T, Galili G . Selective autophagy in the aid of plant germination and response to nutrient starvation. Autophagy, 2012,8:838-839. |
[33] | Han C, Zhen S, Zhu G, Bian Y, Yan Y . Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination. Plant Physiol Biochem, 2017,115:320-327. |
[34] | Wasternack C, Hause B . Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. an update to the 2007 review in Annals of Botany. Ann Bot, 2013,111:1021-1058. |
[35] | Kumar D . Salicylic acid signaling in disease resistance. Plant Sci, 2014,228:127-134. |
[36] | Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra R K, Kumar V, Verma R, Upadhyay R G, Pandey M, Sharma S . Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci, 2017,8:161. |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[9] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[10] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[11] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[12] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[13] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[14] | 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析[J]. 作物学报, 2022, 48(4): 812-824. |
[15] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
|