欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (01): 93-101.doi: 10.3724/SP.J.1006.2020.94043

• 耕作栽培·生理生化 • 上一篇    下一篇

棉花根系生长与叶片衰老的协调性

王素芳,薛惠云,张志勇(),汤菊香   

  1. 河南科技学院/河南省现代生物育种协同创新中心/河南省棉麦分子生态和种质创新重点实验室, 河南新乡 453003
  • 收稿日期:2019-03-18 接受日期:2019-08-09 出版日期:2020-01-12 网络出版日期:2019-09-10
  • 通讯作者: 张志勇
  • 作者简介:E-mail: wang2010sufang@126.com
  • 基金资助:
    本研究由国家自然科学基金项目资助(31271648);本研究由国家自然科学基金项目资助(31571600)

Coordination of root growth and leaf senescence in cotton

WANG Su-Fang,XUE Hui-Yun,ZHANG Zhi-Yong(),TANG Ju-Xiang   

  1. Henan Institute of Science and Technology/Henan Collaborative Innovation Center of Modern Biological Breeding/Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, Henan, China
  • Received:2019-03-18 Accepted:2019-08-09 Published:2020-01-12 Published online:2019-09-10
  • Contact: Zhi-Yong ZHANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31271648, 31571600).(31271648);This study was supported by the National Natural Science Foundation of China (31271648, 31571600).(31571600)

摘要:

为探索棉花根系生长和叶片衰老之间的协调性, 选用早熟性一致但衰老快慢有明显差异的棉花基因型百棉1号(叶片衰老慢)和DP99B (叶片衰老快), 于2011—2012年, 在田间条件下研究了其根系生长和活力、叶片衰老和产量。结果表明, 2年间百棉1号的纤维产量(皮棉及霜前皮棉)均显著高于DP99B。百棉1号的叶片光合作用或基于吸收光能的性能指数显著高于DP99B。百棉1号的根系长度密度和根系深层分布比例及根系活力(以伤流液总量和伤流液蛋白质含量表示)显著高于DP99B。2012年结果显示, DP99B根系生长比百棉1号快, 并且DP99B根系长度密度及根系活力分别在8月中旬和7月下旬显著高于百棉1号, 且伤流液分泌总量是百棉1号的1.7倍。棉花盛花期后, 根系密度大、伤流液分泌多和叶片衰老晚具有一致性, 证实棉花叶片衰老受后期根系生长和活力的调控。

关键词: 棉花, 根系分布, 根长密度, 伤流液, 叶片衰老

Abstract:

Two cotton cultivars, Baimian 1 and DP99B, were used to investigate the root growth and vigor, leaf senescence and yield in the field during 2011-2012. Baimian 1 produced higher cotton fiber yield than DP99B during two years. Baimian 1 had better leaf photosynthetic rate or performance index based on light energy absorption, higher root length density (RLD) and better root distribution, and higher root vigor than DP99B, evidenced by higher volume of bleeding sap, in which higher percentage of protein contents was contained. In 2012, DP99B had faster root growth with higher RLD at middle August and higher root vigor at late July than Baimian 1, and the total xylem sap amount of DP99B was 1.7 times that of Baimian 1. After bloom peaking, the higher density of root, more bleeding sap and slower leaf senescence showed the coordination to a great extent, confirming that leaf senescence is regulated by root growth and root vigor in later cotton growth season.

Key words: cotton, root distribution, root length density, bleeding sap, leaf senescence

表1

大田条件下, 2个棉花基因型的产量和霜前籽棉率"

年份Year 品种
Variety
籽棉
Seed cotton
(kg hm-2)
皮棉
Ginned cotton
(kg hm-2)
霜前籽棉
Seed cotton before frost (kg hm-2)
霜前皮棉
Ginned cotton before frost (kg hm-2)
霜前籽棉率
Ratio of seed cotton before frost (%)
2011 DP99B 4026.0 a 1576.5 b 3375.0 a 1318.5 b 83.8 a
百棉1号Baimian 1 4164.0 a 1792.5 a 3573.0 a 1539.0 a 85.8 a
2012 DP99B 4026.0 b 1587.0 b 3829.5 b 1509.0 b 95.1 a
百棉1号Baimian 1 4656.0 a 2019.0 a 4311.0 a 1869.0 a 92.6 a

表2

2012年2个基因型棉花白花以上主茎节数/开白花动态"

基因型
Genotype
日期 Date
June 28/June 30 July 5/July 7 July 12/July 14 July 19/July 21 July 26/July 28 -/August 4
DP99B 8.3 b/2 a 6.7 b/14 a 6.8 b/31 a 6.0 b/11 a 3.8 a/15 b -/16 b
百棉1号Baimian 1 9.4 a/1 a 7.5 a/13 a 7.2 a/31 a 6.6 a/11 a 3.8 a/19 a -/23 a

图1

2011年2个基因型棉花倒一叶净光合速率Pn变化趋势"

表3

2012年不同基因型棉花叶片叶绿素荧光随时间的变化趋势"

日期
Date (month/day)
基因型
Genotype
倒1叶 First leaf counted from stem top
Fo Fv/Fm PIABS
7/20 DP99B 526 a 0.84 a 6.98 a
百棉1号 Baimian 1 541 a 0.84 a 6.97 a
8/10 DP99B 558 a 0.83 a 4.71 b
百棉1号 Baimian 1 538 a 0.84 a 5.83 a
8/30 DP99B 551 a 0.84 a 5.10 b
百棉1号 Baimian 1 477 b 0.84 a 6.10 a
9/20 DP99B 604 a 0.80 b 2.72 b
百棉1号 Baimian 1 551 b 0.83 a 3.77 a
10/11 DP99B 610 a 0.76 b 0.51 b
百棉1号Baimian 1 487 b 0.83 a 2.68 a

表4

2011年9月20日不同基因型棉花根系长度密度、面积密度、体积密度及纵向分布"

土层深度
Soil depth
根长度密度RLD (mm cm-3) 根表面积密度RSD (mm2 cm-3) 根体积密度RVD (mm3 cm-3)
DP99B 百棉1号Baimian 1 DP99B 百棉1号Baimian 1 DP99B 百棉1号Baimian 1
0-20 cm 3.27 a 2.76 a 4.62 a 3.37 b 0.51 a 0.33 b
20-40 cm 1.55 b 3.47 a 2.34 b 4.61 a 0.28 b 0.48 a
0-40 cm 2.41 b 3.12 a 3.48 a 3.99 a 0.39 a 0.41 a
纵向分布LD (%) 47.33 b 125.98 a 50.63 b 136.56 a 55.00 b 146.15 a

表5

2012年不同基因型棉花根系长度密度、面积密度、体积密度及纵向分布"

日期
Date (month/day)
土层深度
Soil depth
(cm)
根长度密度
RLD (mm cm-3)
根表面积密度
RSD (mm cm-3)
根体积密度
RVD (mm3 cm-3)
DP99B 百棉1号Baimian 1 DP99B 百棉1号
Baimian 1
DP99B 百棉1号Baimian 1
7/4 0-20 2.00 a 2.17 a 2.50 a 2.60 a 0.25 a 0.25 a
20-40 1.61 a 1.98 a 1.98 a 2.53 a 0.19 a 0.25 a
40-60 0.79 b 1.11 a 1.20 b 1.72 a 0.15 a 0.21 a
60-80 0.30 a 0.28 a 0.56 a 0.51 a 0.08 a 0.08 a
0-80 1.17 a 1.38 a 1.56 a 1.84 a 0.17 a 0.20 a
纵向分布LD (%) 30.17 a 33.34 a 39.43 a 43.63 a 52.38 a 58.33 a
7/24 0-20 5.57 a 5.08 a 6.02 a 5.66 a 0.53 a 0.51 a
20-40 3.24 a 2.61 a 4.06 a 2.82 b 0.40 a 0.23 b
40-60 2.26 b 3.36 a 2.55 b 4.04 a 0.23 b 0.38 a
60-80 1.20 a 1.24 a 1.75 a 1.67 a 0.21 a 0.19 a
0-80 3.07 a 3.07 a 3.60 a 3.55 a 0.34 a 0.33 a
纵向分布LD (%) 39.24 b 59.81 a 42.64 b 67.38 a 47.73 b 77.14 a
8/11 0-20 9.26 a 7.28 b 8.38 a 6.59 b 0.62 a 0.47 a
20-40 3.67 a 2.93 a 3.75 a 2.94 b 0.30 a 0.23 a
40-60 3.27 a 3.49 a 3.67 a 3.89 a 0.34 a 0.34 a
60-80 2.06 a 1.56 a 2.54 a 2.14 a 0.25 a 0.23 a
0-80 4.57 a 3.82 b 4.59 a 3.89 b 0.38 a 0.32 a
纵向分布LD (%) 41.26 b 49.48 a 51.21 b 63.28 a 65.12 b 81.82 a
9/3 0-20 6.47 b 8.85 a 6.62 b 8.66 a 0.53 b 0.68 a
20-40 3.12 a 3.39 a 3.11 a 3.67 a 0.25 a 0.32 a
40-60 2.56 a 2.16 a 2.67 a 2.20 a 0.21 a 0.19 a
60-80 1.40 a 1.66 a 1.91 a 2.33 a 0.21 a 0.25 a
0-80 3.39 a 4.01 a 3.58 a 4.21 a 0.30 a 0.36 a
纵向分布LD (%) 41.31 a 31.22 b 47.12 a 36.71 b 54.05 a 44.68 b
9/23 0-20 6.91 b 9.24 a 9.10 b 11.42 a 0.98 b 1.12 a
20-40 3.75 b 5.18 a 4.35 b 5.57 a 0.40 a 0.49 a
40-60 3.07 b 3.95 a 3.28 b 4.66 a 0.28 b 0.45 a
60-80 1.37 b 3.06 a 1.88 b 3.89 a 0.21 b 0.40 a
0-80 3.78 b 5.36 a 4.65 b 6.38 a 0.47 b 0.62 a
纵向分布LD (%) 41.67 b 48.65 a 38.33 b 50.29 a 35.38 b 52.63 a
10/13 0-20 6.03 b 9.86 a 7.05 b 10.87 a 0.68 b 0.95 a
20-40 3.00 b 3.47 a 4.04 b 5.52 a 0.42 b 0.70 a
40-60 1.99 b 3.55 a 2.36 b 4.31 a 0.23 b 0.42 a
60-80 1.17 b 1.88 a 1.48 b 2.66 a 0.15 b 0.30 a
0-80 3.05 b 4.69 a 3.73 b 5.84 a 0.37 b 0.59 a
纵向分布LD (%) 34.99 b 40.67 a 34.63 b 42.53 a 34.62 b 43.59 a

表6

2012年2个基因型棉花根系伤流液总量、流速及蛋白质含量"

日期
Date
(month/day)
基因型
Genotype
伤流液 Bleeding sap
总量
Total volume (mL)
流速
Velocity
(μL h-1)
蛋白质含量
Protein conc.
(μg mL-1)
蛋白质总量
Total protein content
(μg)
7/22 DP99B 11.1 a 38.4 a 0.8 a 9.4 a
百棉1号Baimian 1 6.6 b 23.0 b 0.8 a 5.1 b
8/02 DP99B 8.5 a 29.6 a 1.5 a 12.2 a
百棉1号Baimian 1 7.3 a 25.5 a 1.4 a 10.4 a
8/22 DP99B 4.9 b 17.1 b 2.7 a 13.6 b
百棉1号Baimian 1 14.0 a 48.7 a 2.3 b 31.1 a
9/15 DP99B 0.4 b 1.4 b 1.2 a 0.5 b
百棉1号Baimian 1 7.1 a 24.7 a 1.0 a 7.3 a
[1] Hodge A, Berta G, Doussan C, Francisco M, Crespi M . Plant root growth, architecture and function. Plant Soil, 2009,321:153-187.
doi: 10.1007/s11104-009-9929-9
[2] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H . Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009,113:31-40.
doi: 10.1016/j.fcr.2009.04.004
[3] Qi W Z, Liu H H, Liu P, Dong S T, Zhao B Q, So H B, Li G, Liu H D, Zhang J W, Zhao B . Morphological and physiological characteristics of corn (Zea mays L.) roots from cultivars with different yield potentials. Eur J Agron, 2012,38:54-63.
doi: 10.1016/j.eja.2011.12.003
[4] Mu X H, Chen F J, Wu Q P, Chen Q W, Wang J F, Yuan L X, Mi G H . Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. Eur J Agron, 2015,63:55-61.
doi: 10.1016/j.eja.2014.11.009
[5] Brouder S M, Cassman K G . Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculitic soil. Field Crops Res, 1990,23:187-203.
doi: 10.1016/0378-4290(90)90054-F
[6] 凌启鸿, 陆卫平, 蔡建中, 曹显祖 . 水稻根系分布与叶角关系的研究初报. 作物学报, 1989,15:123-131.
Ling Q H, Lu W P, Cai J Z, Cao X Z . The relationship between root distribution and leaf angle in rice plant. Acta Agron Sin, 1989,15:123-131 (in Chinese with English abstract).
[7] Kong L, Si J, Sun M, Feng B, Zhang B, Li S, Wang Z, Wang F . Deep roots are pivotal for regulating post-anthesis leaf senescence in wheat (Triticum aestivum L.). J Agron Crop Sci, 2013,199:209-216.
doi: 10.1111/jac.12007
[8] 王余龙, 蔡建中, 何杰升, 陈林, 徐家宽, 卞悦 . 水稻颖花根活量与籽粒灌浆结实的关系. 作物学报, 1992,18:81-89.
Wang Y L, Cai J Z, He J S, Chen L, Xu J K, Bian Y . The relationships between spikelet-root-activity and grain filling and ripening in rice (Oryza sativa). Acta Agron Sin, 1992,18:81-89 (in Chinese with English abstract).
[9] 潘晓华, 王永锐, 傅家瑞 . 水稻根系生长生理的研究进展. 植物学通报, 1996,13(2):13-20.
Pan X H, Wang Y R, Fu J R . Advance in the study on the growth-physiology in rice of root system ( Oryza sativa). Chin Bull Bot, 1996,13(2):13-20 (in Chinese with English abstract).
[10] 岳寿松, 于振文, 余松烈 . 小麦旗叶与根系衰老的研究. 作物学报, 1996,22:55-58.
Yue S S, Yu Z W, Yu S L . Senescence of flag leaf and root in wheat. Acta Agron Sin, 1996,22:55-58 (in Chinese with English abstract).
[11] Zhang Z, Xin W, Wang S, Zhang X, Dai H F, Sun R R, Frazier T, Zhang B H, Wang Q L . Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development. Funct Integr Genomic, 2015,15:17-26.
doi: 10.1007/s10142-014-0395-y pmid: 25163431
[12] 邱鸿步, 潘裕才, 王斌斌, 陆定志 . 籼型水稻的叶片老化与植株伤流强度及产量关系的研究. 浙江农业科学, 1981, (4):175-178.
Qiu H B, Pan Y C, Wang B B, Lu D Z . The relationship between leaf senescence and the flow intensity of xylem sap, yield of indica rice. J Zhejiang Agric Sci, 1981, (4):175-178 (in Chinese with English abstract).
[13] 梁建生, 曹显祖 . 杂交水稻叶片的若干生理指标与根系伤流强度关系. 江苏农学院学报, 1993,14(4):25-30.
Liang J S, Cao X Z . Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice ( O. sativa L.). J Jiangsu Agric Coll, 1993,14(4):25-30 (in Chinese with English abstract).
[14] 赵全志, 黄丕生, 凌启鸿, 高尔明, 董家胜 . 水稻颖花伤流量与群体质量的关系. 南京农业大学学报, 2000,23(3):9-12.
Zhao Q Z, Huang P S, Ling Q H, Gao E M, Dong J S . The relationship between spikelet-bleeding-intensity and population quality of rice. J Nanjing Agric Univ, 2000,23(3):9-12 (in Chinese with English abstract).
[15] 许凤英, 马均, 王贺正, 刘惠远, 黄清龙, 马文波, 明东风 . 强化栽培条件下水稻的根系特征及其与产量形成的关系. 杂交水稻, 2003,18(4):61-65.
Xu F Y, Ma J, Wang H Z, Liu H Y, Huang Q L, Ma W B, Ming D F . The characteristics of roots and their relation to the formation of grain yield under the cultivation by system of rice intensification (SRI). Hybrid Rice, 2003,18(4):61-65 (in Chinese with English abstract).
[16] Chen Y Z, Dong H Z . Mechanisms and regulation of senescence and maturity performance in cotton. Field Crops Res, 2016,189:1-9.
pmid: 27396141
[17] Chen Y Z, Kong X Q, Dong H Z . Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Field Crops Res, 2018,216:10-21.
doi: 10.1016/j.fcr.2017.11.002
[18] 董合忠, 李维江, 唐薇, 张冬梅 . 棉花生理性早衰研究进展. 棉花学报, 2005,17:56-60.
Dong H Z, Li W J, Tang W, Zhang D M . Research progress in physiological premature senescence in cotton. Cotton Sci, 2005,17:56-60 (in Chinese with English abstract).
[19] Wright P R . Premature senescence of cotton-predominantly a potassium disorder caused by an imbalance of source and sink. Plant Soil, 1999,211:231-239.
doi: 10.1023/A:1004652728420
[20] Wang Y, Li B, Du M W, Eneji A E, Wang B M, Duan L S, Li Z H, Tian X L . Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J Exp Bot, 2012,63:5887-5901.
doi: 10.1093/jxb/ers238
[21] Zhao J Q, Li S, Jiang T F, Liu Z, Zhang W W, Jian G L, Qi F J . Chilling stress: the key predisposing factor for causing Alternaria alternata infection and leading to cotton(Gossypium hirsutum L.) leaf senescence. PLoS One, 2012,7:e36126.
doi: 10.1371/journal.pone.0036126 pmid: 22558354
[22] 孔祥强, 罗振, 李存东, 董合忠 . 棉花早衰的分子机理研究进展. 棉花学报, 2015,27:71-79.
doi: Y2015/V27/I1/71
Kong X Q, Luo Z, Li C D, Dong H Z . Molecular mechanisms of premature senescence in cotton. Cotton Sci, 2015,27:71-79 (in Chinese with English abstract).
doi: Y2015/V27/I1/71
[23] Dong H Z, Niu Y H, Li W J, Tang W, Li Z H, Zhang D M . Regulation effects of various training modes on source-sink relation of cotton. Chin J Appl Ecol, 2008,19:819-824.
[24] Dai J L, Dong H Z . Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Acta Physiol Plant, 2011,33:1697-1705.
doi: 10.1007/s11738-010-0706-4
[25] 胡泽彬, 王素芳, 张新, 张志勇, 代海芳, 王清连 . 短季棉和长季棉钾效率和根系对钾缺乏响应的差异. 华北农学报, 2014,29(5):218-225.
doi: 10.7668/hbnxb.2014.05.037
Hu Z B, Wang S F, Zhang X, Zhang Z Y, Dai H F, Wang Q L . Differences of potassium efficiency and root responses to potassium deficiency between short-and long-season cotton genotypes. Acta Agric Boreali-Sin, 2014,29(5):218-225 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2014.05.037
[26] Zhang Z Y, Tian X L, Duan L S, Wang B M, He Z P, Li Z H . Differential responses of conventional and Bt-transgenic cotton to potassium deficiency. J Plant Nutr, 2007,30:659-670.
doi: 10.1080/01904160701289206
[27] Cassman K G, Bryant D C, Higashi S L, Roberts B A, Kerby T A . Soil potassium balance and cumulative cotton response to annual potassium additions on a vermiculitic soil. Soil Sci Soc Am J, 1989,53:805-812.
doi: 10.2136/sssaj1989.03615995005300030030x
[28] 段俊, 梁承邺, 黄毓文 . 杂交水稻开花结实期间叶片衰老. 植物生理学报, 1997,23:139-144.
Duan J, Liang C Y, Huang Y W . Studies on leaf senescence of hybrid rice at flowering and grain formation stage. Acta Phytophysiol Sin, 1997,23:139-144 (in Chinese with English abstract).
[29] Nooden L D . Integration of soybean pod development and monocarpic senescence. Physiol Planta, 1984,62:273-284.
doi: 10.1111/ppl.1984.62.issue-2
[30] Miceli F, Crafts-Brandner S J, Egli D B . Physical restriction of pod growth alters development of soybean plants. Crop Sci, 1995,35:1081-1085.
[31] 黄升谋 . 水稻源库关系与叶片衰老的研究. 江西农业大学学报, 2001,23(2):171-173.
Huang S M . A study on the relationship between the leaf senescence and source sink ratio in hybrid rice. Acta Agric Univ Jiangxiensis, 2001,23(2):171-173 (in Chinese with English abstract).
[32] Zhao C Y, Yan Y Y, Yimamu Y, Li J Y . Effects of soil moisture on cotton root length density and yield under drip irrigation with plastic mulch in Aksu Oasis farmland. J Arid Land, 2010,2:243-249.
[33] Ning S R, Shi J C, Zuo Q, Wang S, Ben-Gal A . Generalization of the root length density distribution of cotton under film mulched drip irrigation. Field Crops Res, 2015,177:125-136.
doi: 10.1016/j.fcr.2015.03.012
[34] Chen J, Liu L T, Wang Z B, Sun H C, Zhang Y J, Lu Z Y, Li C D . Determining the effects of nitrogen rate on cotton root growth and distribution with soil cores and minirhizotrons. PLoS One, 2018,13:e0197284.
doi: 10.1371/journal.pone.0197284 pmid: 29750816
[35] Yang X K, Zhang Z Q, Niu Y, Tian H Y, Ma F Y . Cotton root morphology and dry matter accumulation at different film removal times. Agron J, 2017,109:2586-2597.
doi: 10.2134/agronj2017.06.0310
[36] Gerik T J, Morrison J E, Chichester F W . Effects of controlled traffic on soil physical properties and crop rooting. Agron J, 1987,79:434-438.
doi: 10.2134/agronj1987.00021962007900030006x
[37] Pillinger C, Paveley N, Foulkes M J, Spink J . Explaining variation in the effects of take-all (Gaeumannomyces graminis var. tritici) on nitrogen and water uptake by winter wheat. Plant Pathol, 2005,54:491-501.
doi: 10.1111/ppa.2005.54.issue-4
[38] Hoad S P, Russell G, Kettlewell P S, Belshaw M . Root system management in winter wheat: practices to increase water and nitrogen use. HGCA Project Report, 2004. p 351.
[39] Atta B M, Mahmood T, Trethowan R M . Relationship between root morphology and grain yield of wheat in north-western NSW, Australia. Aust J Crop Sci, 2013,7:2108-2115.
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!