欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (10): 1639-1646.doi: 10.3724/SP.J.1006.2020.04056

• 研究简报 • 上一篇    

油菜抗咪唑啉酮类除草剂基因标记的开发与应用

胡茂龙1,2(), 程丽1, 郭月1, 龙卫华1, 高建芹1, 浦惠明1,*(), 张洁夫1,2, 陈松1   

  1. 1 江苏省农业科学院经济作物研究所 / 国家油料作物改良中心南京分中心 / 农业农村部长江下游棉花与油菜重点实验室/江苏省农业生物学重点实验室 / 江苏省现代作物生产协同创新中心, 江苏南京 210014
    2 江苏大学生命科学研究院, 江苏镇江 212023
  • 收稿日期:2020-03-02 接受日期:2020-06-02 出版日期:2020-10-12 网络出版日期:2020-06-14
  • 通讯作者: 浦惠明
  • 作者简介:E-mail: humolon@163.com, Tel: 025-84390372
  • 基金资助:
    国家重点研发计划项目(2016YFD0101300);国家自然科学基金项目(31671731);国家自然科学基金项目(31901503);国家现代农业产业技术体系建设专项(CARS-13);江苏省自然科学基金项目(BK20190267)

Development and application of the marker for imidazolinone-resistant gene in Brassica napus

HU Mao-Long1,2(), CHENG Li1, GUO Yue1, LONG Wei-Hua1, GAO Jian-Qin1, PU Hui-Ming1,*(), ZHANG Jie-Fu1,2, CHEN Song1   

  1. 1 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Sub-center, National Center of Oil Crops Improvement / Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs / Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, Jiangsu, China
    2 Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • Received:2020-03-02 Accepted:2020-06-02 Published:2020-10-12 Published online:2020-06-14
  • Contact: Hui-Ming PU
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101300);National Natural Science Foundation of China(31671731);National Natural Science Foundation of China(31901503);China Agricultural Research System(CARS-13);Natural Science Foundation of Jiangsu Province(BK20190267)

摘要:

草害已成为严重制约我国油菜生产的重要因素。种植抗除草剂品种和采用化学除草是防控草害的经济有效途径。为了开展分子标记辅助选择(marker-assisted selection, MAS)育种, 加速抗除草剂品种培育, 本研究针对已发现的抗咪唑啉酮类除草剂油菜M9中BnALS1R基因编码区第1913位点的SNP变异, 开发高通量、低成本的竞争性等位基因特异PCR (kompetitive allele specific PCR, KASP)标记。采用筛选出的KBA1R19681913B标记在2个F2群体中进行KASP反应。结果表明, 该标记能有效检测群体中存在的BnALS1R 3种基因型, 其分离比均为1︰2︰1, 遵循单基因遗传规律, 且基因型与表型完全吻合。将该标记用于BnALS1R抗性纯合基因的回交转育, 获得200多个抗咪唑啉酮油菜恢复系。该标记还可在油菜苗期鉴定抗性杂交种的纯度。KASP标记KBA1R19681913B的获得为油菜抗除草剂MAS育种以及抗性新种质的培育提供了技术支撑。

关键词: 草害, 油菜, 标记辅助选择, 咪唑啉酮类除草剂, KASP标记

Abstract:

Weed damage is one of the most important factors restricting the development of rapeseed production in China. Cultivation of herbicide-resistant varieties combined with chemical herbicides was an extremely effective help to control field weed in rapeseed production. To accelerate the breeding of cultivars with resistance imidazolinone herbicides through molecular marker-assisted selection in Brassica napus, the simplest, most cost-effective and high-throughput KASP markers were developed by using a SNP mutation at 1913 bp position of ALS (acetolactate synthase) gene in the mutant M9. A polymorphic marker designed KBA1R19681913B was obtained to effectively distinguish the homozygous resistant M9 from susceptible rapeseeds. Meanwhile, the KASP marker was evaluated in two F2 populations and could effectively discriminate three genotypes. F2 populations gave a good fit to the expected 1:2:1 ratio, confirming a single gene Mendel model with the perfect matched between phenotyping and genotyping. About more than two hundred homozygous restoring lines containing BnALS1R were developed through KASP marker selection in multi-generation backcross and showed stable imidazolinone herbicide resistance. This functional marker can also be used to identify the purity of hybrid seeds at the seedling stage. In conclusion, the validated KASP marker KBA1R19681913B would provide a technical support for developing herbicide-resistant rapeseed in marker-assisted selection and identification of resistant germplasm.

Key words: weed damage, rapeseed (Brassica napus L.), marker-assisted selection, imidazolinone herbicides, KASP marker

表1

抗性基因BnALS1R的KASP分子标记引物序列"

KASP名称KASP ID 引物Primer (5°-3°)
KBA1R19681913A X-allele: AACATGTGTTACCGATGATCCCAAG
Y-allele: GAACATGTGTTACCGATGATCCCAAA
Common: CTTAGTGCGACCATCCCCTTCT
KBA1R19681913B X-allele: TATTACATCTTTGAAAGTGCCACCAC
Y-allele: GTTATTACATCTTTGAAAGTGCCACCAT
Common: CAGGACCATACCTGTTGGATGTGATA

图1

油菜BnALS1与BnALS3基因序列比对与多态性引物位置 倒三角形表示突变位点。箭头线表示引物位置和扩增方向。"

图2

KASP标记KBA1R19681913B在小群体中分型图"

表2

KASP标记KALS1R19681913B在小群体中的分型结果与抗性表型"

材料
Material
标记分型
Genotyping
测序结果
Sequecing
抗性特性
Resistance
材料来源
Source
M9-2 A A R M9后代株系 M9 progeny line
M9-14 A A R M9后代株系 M9 progeny line
N341 G G S MICMS恢复系 MICMS restorer line
3075R G G S MICMS恢复系 MICMS restorer line
F1-2 G/A G/A R F1(N341×M9-2) F1 hybrid
F1-3 G/A G/A R F1(3075R×M9-14) F1 hybrid
M318-1 G G S F2(N341×M9-2)单株 F2 plant
M318-2 A A R F2(N341×M9-2)单株 F2 plant
M318-3 G G S F2(N341×M9-2)单株 F2 plant
M318-4 A A R F2(N341×M9-2)单株 F2 plant
M318-5 G/A G/A R F2(N341×M9-2)单株 F2 plant
M318-6 A A R F2(N341×M9-2)单株 F2 plant
M318-7 G/A G/A R F2(N341×M9-2)单株 F2 plant
M318-8 A A R F2(N341×M9-2)单株 F2 plant
M318-9 G/A G/A R F2(N341×M9-2)单株 F2 plant
M318-10 A A R F2(N341×M9-2)单株 F2 plant
M318-11 A A R F2(N341×M9-2)单株 F2 plant
M318-12 G/A G/A R F2(N341×M9-2)单株 F2 plant

图3

标记KBA1R19681913B在2个F2群体及亲本中的基因分型"

表3

标记在F2群体中基因型分型"

杂交组合
Cross
基因型Genotype 总株数
Total
卡平方值
χ2 -value
P
P- value
G/G G/A A/A
F2 (3075R/M9-14) 8 14 7 29 0.012 0.994
F2 (N341/M9-2) 11 23 16 50 0.085 0.958

表4

标记KBA1R19681913B在鉴定杂交种子纯度的应用"

授粉方式
Different pollination conditions
除草剂处理
IMI treatment
鉴定株数
Numbers of plants
标记鉴定纯度
Seed purity
identification by the markers (%)
田间鉴定纯度
Seed purity
identification in the field (%)
杂种纯度提高
Increased seed purity after IMI treatment (%)
人工杂交授粉
Artificial hybridization
喷药Treated 117 100 100
不喷药Untreated 90 100 100
网罩隔离授粉
Hybridization in tents
喷药Treated 130 97 97 13
不喷药Untreated 194 84 84
天然授粉
Natural pollination
喷药Treated 165 96 96 16
不喷药Untreated 155 80 80
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018,40:613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018,40:613-617 (in Chinese with English abstract).
[2] 胡茂龙, 浦惠明, 高建芹, 龙卫华, 戚存扣, 张洁夫, 陈松. 油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9的遗传和基因克隆. 中国农业科学, 2012,45:4326-4334.
doi: 10.3864/j.issn.0578-1752.2012.20.022
Hu M L, Pu H M, Gao J Q, Long W H, Qi C K, Zhang J F, Chen S. Inheritance and gene cloning of an ALS inhabiting herbicide-resistant mutant line M9 in Brassica napus. Sci Agric Sin, 2012,45:4326-4334 (in Chinese with English abstract).
[3] 张婷, 师志刚, 王根平, 程汝宏, 陈媛, 冀小绵, 杨伟红. 咪唑乙烟酸对冀谷33生长发育的影响及对后茬作物的安全性. 中国农业科学, 2015,48:4916-4923.
doi: 10.3864/j.issn.0578-1752.2015.24.006
Zhang T, Shi Z G, Wang G P, Cheng R H, Chen Y, Jin X M, Yang W H. Effect of imazethapyr on millet Jigu 33 growth and its safety on succeeding crops. Sci Agric Sin, 2015,48:4916-4923 (in Chinese with English abstract).
[4] Tan S, Richard R E, Mark L D, Bijay K S, Dale L S. Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci, 2005,61:246-257.
doi: 10.1002/ps.993 pmid: 15627242
[5] Lyu J Y, Huang Q X, Sun Y Y, Qu G P, Guo Y, Zhang X J, Zhao H X, Hu S W. Male sterility of an AHAS-mutant induced by tribenuron-methyl solution correlated with the decrease of AHAS activity in Brassica napus L. Front Plant Sci, 2018,9:1014.
doi: 10.3389/fpls.2018.01014 pmid: 30061911
[6] Li H T, Li J J, Zhao B, Wang J, Yi L C, Liu C, Wu J S, King G J, Liu K D. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility. Theor Appl Genet, 2015,128:107-118.
doi: 10.1007/s00122-014-2415-7 pmid: 25504538
[7] Piao Z Z, Wang W, Wei Y N, Francesco Z, Wan C Z, Bai J J, Wu S W, Wang X Q, Fang J. Characterization of an acetohydroxy acid synthase mutant conferring tolerance to imidazolinone herbicides in rice (Oryza sativa). Planta, 2018,247:693-703.
doi: 10.1007/s00425-017-2817-2 pmid: 29170911
[8] Han H, Yu Q, Purba E, Li M, Walsh M, Friesen S, Powles S B. A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest Manag Sci, 2012,68:1164-1170.
doi: 10.1002/ps.3278
[9] Tranel P J, Wright T R, Heap I M. Mutations in herbicide- resistant weeds to ALS inhibitors. Online [2020-02-24]. http://www. weedscience.com.
[10] Murphy B P, Tranel P J. Target-site mutations conferring herbicide resistance. Plants, 2019,8:382.
doi: 10.3390/plants8100382
[11] Swanson E B, Herrgesell M J, Arnoldo M, Sippell D W, Wong R S C. Microspore mutagenesis and selection: Canola plants with field tolerance to the imidazolinones. Theor Appl Genet, 1989,78:525-530.
doi: 10.1007/BF00290837 pmid: 24225680
[12] Hattori J, Douglas B, Mourad G, Labbé H, Ouellet T, Sunohara G, Rutledge R, King J, Miki B. An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol Gen Genet, 1995,246:419-425.
doi: 10.1007/BF00290445 pmid: 7891655
[13] Hu M L, Pu H M, Gao J Q, Long W H, Chen F, Zhang W, Zhou X Y, Peng Q, Chen S, Zhang J F. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing. PLoS One, 2017,12:e184917.
[14] Hu M L, Pu H M, Gao J Q, Long W H, Chen F, Zhou X Y, Zhang W, Peng Q, Chen S, Zhang J F. Inheritance and molecular characterization of resistance to AHAS-inhibiting herbicides in rapeseed. J Integr Agric, 2017,16:2421-2433.
doi: 10.1016/S2095-3119(17)61659-9
[15] 高建芹, 浦惠明, 戚存扣, 张洁夫, 龙卫华, 胡茂龙, 陈松, 陈新军, 陈锋, 顾慧. 抗咪唑啉酮油菜种质的发现与鉴定. 植物遗传资源学报, 2010,11:369-373.
Gao J Q, Pu H M, Qi C K, Zhang J F, Long W H, Hu M L, Chen S, Chen X J, Chen F, Gu H. Identification of imidazolidone-resistant oilseed rape mutant. J Plant Genet Resour, 2010,11:369-373 (in Chinese with English abstract).
[16] 高建芹, 浦惠明, 龙卫华, 胡茂龙, 戚存扣, 张洁夫. 抗咪唑啉酮油菜对非选择性除草剂的抗性效应. 江苏农业学报, 2010,26:1186-1191.
Gao J Q, Pu H M, Long W H, Hu M L, Qi C K, Zhang J F. Resistance of imidzolidone-resistant oilseed rape to nonselective herbicide imazethapyr. Jiangsu J Agric Sci, 2010,26:1186-1191 (in Chinese with English abstract).
[17] 浦惠明, 高建芹, 龙卫华, 胡茂龙, 张洁夫, 陈松, 陈新军, 陈锋, 顾慧, 傅三雄, 戚存扣. 油菜抗咪唑啉酮性状的遗传及其应用. 中国油料作物学报, 2011,33:15-19.
Pu H M, Gao J Q, Long W H, Hu M L, Zhang J F, Chen S, Chen X J, Chen F, Gu H, Fu S X, Qi C K. Studies on inheritance of imidazolinones resistance in Brassica napus and its utilization. Chin J Oil Crop Sci, 2011,33:15-19 (in Chinese with English abstract).
[18] Hu M L, Pu H M, Kong L N, Gao J Q, Long W H, Chen S, Zhang J F, Qi C K. Molecular characterization and detection of a spontaneous mutation conferring imidazolinone resistance in rapeseed and its application in hybrid rapeseed production. Mol Breed, 2015,35:46.
doi: 10.1007/s11032-015-0227-3
[19] Liu Z Y, Zhu C S, Jiang Y, Tian Y L, Yu J, An H Z, Tang W J, Sun J, Tang J P, Chen G M, Zhai H Q, Wang C M, Wan J M. Association mapping and genetic dissection of nitrogen use efficiency-related traits in rice (Oryza sativa L.). Funct Integr Genomics, 2016,16:323-333.
doi: 10.1007/s10142-016-0486-z pmid: 26922174
[20] Tan C T, Yu H J, Yang Y, Xu X Y, Chen M S, Rudd J C, Xue Q W, Ibrahim A M H, Garza L, Wang S C. Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. Theor Appl Genet, 2017,130:1867-1884.
doi: 10.1007/s00122-017-2930-4 pmid: 28624908
[21] Nair S K, Babu R, Magorokosho C, Mahuku G, Semagn K, Beyene Y, Das B, Makumbi D, Kumar P L, Olsen M. Fine mapping of Msv1, a major QTL for resistance to maize streak virus leads to development of production markers for breeding pipelines. Theor Appl Genet, 2015,128:1839-1854.
doi: 10.1007/s00122-015-2551-8 pmid: 26081946
[22] Shi Z, Liu S M, Noe J, Arelli P, Meksem K, Li Z L. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics, 2015,16:314.
doi: 10.1186/s12864-015-1531-3 pmid: 25903750
[23] Rutledge R G, Quellet T, Hattori J, Miki B L. Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol Gen Genet, 1991,229:31-40.
doi: 10.1007/BF00264210 pmid: 1896019
[24] Ouellet T, Rutledget R G, Miki B L. Members of the acetohydroxyacid synthase multigene family of Brassica napus have divergent patterns of expression. Plant J, 1992,2:321-330.
pmid: 1303798
[25] 中国国家标准: GB4407.2-2008. 经济作物种子,第2部分: 油料类. 中国国家标准化管理委员会发布, 2018.
National Standards of China: GB4407.2-2008. Seed of Economic Crops. Part 2: Oil Species, Standardization Administration of China, 2018 (in Chinese).
[26] 浦惠明, 戚存扣, 张洁夫, 高建芹, 傅寿仲, 陈新军, 陈松, 赵祥祥. 转基因抗除草剂油菜对近缘作物的基因漂移研究. 生态学报, 2005,25:196-203.
Pu H M, Qi C K, Zhang J F, Gao J Q, Fu S Z, Chen X J, Chen S, Zhao X X. Studies on the gene flow from herbicide-tolerant GM rapeseed to its close relative crops. Acta Ecol Sin, 2005,25:196-203 (in Chinese with English abstract).
[27] 浦惠明, 戚存扣, 张洁夫, 高建芹, 傅寿仲, 陈新军, 陈松, 赵祥祥. 转基因抗除草剂油菜对十字花科杂草的基因漂移研究. 生态学报, 2005,25:910-916.
Pu H M, Qi C K, Zhang J F, Gao J Q, Fu S Z, Chen X J, Chen S, Zhao X X. The studies on gene flow from GM herbicide-tolerant rapeseed to cruciferous weeds. Acta Ecol Sin, 2005,25:910-916 (in Chinese with English abstract).
[28] Konieczny A, Ausubel F. A procedure for mapping Arabidopsis mutations using co-dominant ecotype specific PCR-based markers. Plant J, 1993,4:403-410.
doi: 10.1046/j.1365-313x.1993.04020403.x pmid: 8106085
[29] Michaels S D, Amasino R M. A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J, 1998,14:381-385.
doi: 10.1046/j.1365-313x.1998.00123.x pmid: 9628032
[30] Neff M M, Neff J D, Chory J, Pepper A E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J, 1998,14:387-392.
doi: 10.1046/j.1365-313x.1998.00124.x pmid: 9628033
[31] LGC Genomics. KASP genotyping chemistry user guide and manual. LGC, 2013 [2018-04-12]. https://www.lgcgroup.com/ LGCGroup/media/PDFs/Products/Genotyping/KASP-genotyping- chemistry-User-guide.pdf?ext=.pdf.
[32] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014,33:1-14.
doi: 10.1007/s11032-013-9917-x
[33] 田宇, 杨蕾, 李英慧, 邱丽娟. 抗大豆胞囊线虫SCN3-11位点的KASP 标记开发和利用. 作物学报, 2018,44:1600-1611.
doi: 10.3724/SP.J.1006.2018.01600
Tian Y, Yang L, Li Y H, Qiu L J. Development and utilization of KASP marker for SCN3-11 locus resistant to soybean cyst nematode. Acta Agron Sin, 2018,44:1600-1611 (in Chinese with English abstract).
[34] Chang A, Lamara M, Wei Y D, Hu H, Parkin I A P, Gossen B D, Peng G, Yu F Q. Clubroot resistance gene Rcr6 in Brassica nigra resides in a genomic region homologous to chromosome A08 in B. rapa. BMC Plant Biol, 2019,19:224.
doi: 10.1186/s12870-019-1844-5 pmid: 31142280
[35] Fu F Y, Liu X J, Wang R, Zhai C, Peng G, Yu F Q, Fernando W G D. Fine mapping of Brassica napus blackleg resistance gene Rlm1 through bulked segregant RNA sequencing. Sci Rep, 2019,9:14600.
doi: 10.1038/s41598-019-51191-z pmid: 31601933
[36] 胡茂龙, 龙卫华, 高建芹, 付三雄, 陈锋, 周晓婴, 彭琦, 张维, 浦惠明, 戚存扣, 张洁夫, 陈松. 油菜抗咪唑啉酮类除草剂基因BnALS1R等位基因特异PCR标记的开发与应用. 作物学报, 2013,39:1711-1719.
doi: 10.3724/SP.J.1006.2013.01711
Hu M L, Long W H, Gao J Q, Fu S X, Chen F, Zhou X Y, Peng Q, Zhang W, Pu H M, Qi C K, Zhang J F, Chen S. Development and application of allele-specific PCR markers for imidazolinone-resistant gene BnALS1R in Brassica napus. Acta Agron Sin, 2013,39:1711-1719 (in Chinese with English abstract).
[37] Thompson C, Tar’an B. Genetic characterization of the acetohydroxyacid synthase (AHAS) gene responsible for resistance to imidazolinone in chickpea (Cicer arietinum L.). Theor App Genet, 2014,127:1583-1591.
doi: 10.1007/s00122-014-2320-0
[38] Kadaru S, Zhang W Q, Yadav A, James H O. Development and application of allele-specific PCR assays for imazethapyr resistance in rice (Oryza sativa). Euphytica, 2008,160:431-438.
doi: 10.1007/s10681-008-9662-0
[39] Lee H, Sachin R, Neeraj K, Burkea I, Yenisha J P, Gilla K S, Wettsteina D V, Steven E U. Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides. Proc Natl Acad Sci USA, 2011,108:8909-8913.
doi: 10.1073/pnas.1105612108 pmid: 21551103
[40] Chen X, Martin T, Crystal L S, Aliaa E M, Saleh S, Weselake R J. Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol, 2011,155:851-865.
doi: 10.1104/pp.110.169482
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[5] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[6] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[10] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[11] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[12] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[13] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[14] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[15] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!