欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (4): 684-690.doi: 10.3724/SP.J.1006.2021.02035

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻氮高效、耐冷基因OsGRF4功能标记的开发及其利用

孙平勇1(), 张武汉1, 张莉2, 舒服1, 何强1, 彭志荣1, 邓华凤1,3,*()   

  1. 1湖南杂交水稻研究中心杂交水稻国家重点实验室, 湖南长沙 410125
    2湖南省核农学与航天育种研究所, 湖南长沙 410125
    3湖南省农业科学院, 湖南长沙 410125
  • 收稿日期:2020-05-22 接受日期:2020-08-19 出版日期:2021-04-12 网络出版日期:2020-09-10
  • 通讯作者: 邓华凤
  • 作者简介:E-mail: zlspy23@126.com
  • 基金资助:
    湖南省自然科学基金项目(2019JJ50427);湖南省自然科学基金项目(2020JJ5287);湖南省科技重大专项项目(2018NK1020-1);湖南农业科技创新资金项目(2020CX08);湖南农业科技创新资金项目(2019TD06)

Development and application of functional marker for high nitrogen use efficiency and chilling tolerance gene OsGRF4 in rice

SUN Ping-Yong1(), ZHANG Wu-Han1, ZHANG Li2, SHU Fu1, HE Qiang1, PENG Zhi-Rong1, DENG Hua-Feng1,3,*()   

  1. 1State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, Hunan, China
    2Nuclear Agriculture and Space Breeding Research Institute, Changsha 410125, Hunan, China
    3Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
  • Received:2020-05-22 Accepted:2020-08-19 Published:2021-04-12 Published online:2020-09-10
  • Contact: DENG Hua-Feng
  • Supported by:
    Natural Science Foundation of Hunan(2019JJ50427);Natural Science Foundation of Hunan(2020JJ5287);Hunan Province Key Research and Development Program Project(2018NK1020-1);Hunan Agricultural Science and Technology Innovation Project(2020CX08);Hunan Agricultural Science and Technology Innovation Project(2019TD06)

摘要:

通过分子标记辅助选择(molecular marker-assisted selection, MAS)培育氮高效水稻品种是减少氮肥使用量、发展绿色农业和可持续农业的一个重要途经。水稻OsGRF4基因编码生长调节因子蛋白, 编码区第487和488碱基由TC变异为AA, 导致丝氨酸突变为赖氨酸, 使得水稻具有氮高效利用、高产和耐冷的特性。为了提高OsGRF4基因在育种中的选择效率, 本研究根据功能SNP (single nucleotide polymorphism)位点设计和筛选出等位基因特异PCR (polymerase chain reaction)功能标记PF+DMR+PR和PF+XMR+PR。利用此功能标记对不同品种(品系)和川大粒/巨穗稻的F2群体进行基因型检测, 结合测序分析验证, 能准确快速鉴定OsGRF4的纯合显性、纯合隐性和杂合基因型, 且具有操作简单、成本低的特点。本研究开发的功能标记为通过MAS方法利用OsGRF4基因培育氮高效、高产和耐冷水稻新品种提供了技术支撑。

关键词: 水稻, 氮高效利用, 耐冷, OsGRF4基因, 等位基因特异性PCR

Abstract:

The use of molecular marker-assisted selection (MAS) to breed rice with high nitrogen-use efficiency is one of the most effective methods to reduce the amount of nitrogen fertilizer quantity and to develop the green and sustainable agriculture. The gene growth-regulating factor 4 (OsGRF4) encodes a growth regulatory factor protein, and the mutation in the coding region from the nucleotides TC to AA in 487 and 488 substituted the amino acid serine for lysine, which resulting in enhancing nitrogen-use efficiency, increasing grain yield, and improving chilling tolerance in rice. In order to improve the selection efficiency of OsGRF4 in rice breeding, an allele-specific PCR (AS-PCR) marker combination, PF+DMR+PR and PF+XMR+PR, was developed based on the single nucleotide polymorphism in the functional region of the OsGRF4 alleles. The functional marker was used to identify genotypes of different varieties and an F2 population derived from Chuandali/Jusuidao. The three different genotypes of OsGRF4 locus could be accurately distinguished, which was further confirmed by sequencing. This functional marker is simple to operate and low-cost, and could provide a technical support when using MAS to breed new rice varieties of high nitrogen-use efficiency, high yields, and increased chilling tolerance.

Key words: rice, high nitrogen-use efficiency, chilling tolerance, OsGRF4 gene, AS-PCR

图1

OsGRF4基因功能标记设计策略 SNP3为功能性多态位点, PF和PR为外引物, DR和XR为反向内引物, 分别与碱基AA和TC匹配。分别在DR和XR的3′端引入错配碱基C开发了DMR和XMR。箭头表示扩增方向。"

图2

不同引物组合对川大粒和巨穗稻的PCR 扩增效果 单数泳道为川大粒; 双数泳道为巨穗稻; M: 100 bp marker; 1, 2: PF+PR; 3, 4: PF+DR; 5, 6: PF+XR; 7, 8: PF+DR+PR; 9, 10: PF+XR+PR; 11, 12: PF+DMR; 13, 14: PF+XMR; 15, 16: PF+DMR+PR; 17, 18: PF+XMR+PR."

图3

功能标记对不同水稻品种OsGRF4基因型的检测 A: PF+DMR+PR引物组合; B: PF+XMR+PR引物组合; M: 100 bp marker; 1: 川大粒; 2: 巨穗稻; 3: NIL-OsGRF4; 4: NIL-Osgrf4; 5~24: 农香99, 玉针香, 湘晚籼17, 冈46B, BL122, 佳辐占, 农香18, 明恢86, 新银占, 玉柱香, R700, 丰源 B, 农香29, 南洋占, R299, 02428, C418, P7144, 农香16, CY016。"

图4

与OsGRF4共分离标记GL2-11对川大粒/巨穗稻部分F2群体基因型的检测 M: 100 bp marker; 1: 川大粒; 2: 巨穗稻; 3~24: F2分离单株。"

图5

功能标记对川大粒/巨穗稻部分F2群体OsGRF4基因型的检测 M: 100 bp marker; A: PF+DMR+PR; B: PF+XMR+PR; 1: 川大粒; 2: 巨穗稻; 3~24: F2分离单株。"

[1] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Root and shoot traits for rice varieties with higher gain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015,175:47-55.
doi: 10.1016/j.fcr.2015.02.007
[2] 霍中洋, 李杰, 张洪程, 戴其根, 许轲, 魏海燕, 龚金龙. 不同种植方式下水稻氮素吸收利用的特性. 作物学报, 2013,38:1908-1919.
Huo Z Y, Li J, Zhang H C, Dai Q G, Xu K, Wei H Y, Gong J L. Characterization of nitrogen uptake and utilization in rice under different planting methods. Acta Agron Sin, 2013,38:1908-1919 (in Chinese with English abstract).
[3] 陈琛, 张家星, 李万元, 唐东, 罗刚, 王祥菊, 莫兰婧, 吕旻珈, 周娟, 梁国华, 黄建晔, 王余龙, 姚友礼, 董桂春. 氮高效水稻主要源库性状的基本特点及其调控. 中国水稻科学, 2017,31:185-194.
Chen C, Zhang J X, Li W Y, Tang D, Luo G, Wang X J, Mo L J, Lyu M J, Zhou J, Liang G H, Huang J Y, Wang Y L, Yao Y L, Dong G C. Fundamental features of source-sink characters and their regulation in high nitrogen efficiency rice lines. Chin J Rice Sci, 2017,31:185-194 (in Chinese with English abstract).
[4] 蒋志敏, 王威, 储成才. 植物氮高效利用研究进展和展望. 生命科学, 2018,30:1060-1071.
Jiang Z M, Wang W, Chu C C. Towards understanding of nitrogen use efficiency in plants. Chin Bull Life Sci, 2018,30:1060-1071 (in Chinese with English abstract).
[5] Lin C M, Koh S, Stacey G, Yu S M, Lin T Y, Tsay Y F. Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol, 2000,122:379-388.
pmid: 10677431
[6] Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet, 2014,46:652-656.
doi: 10.1038/ng.2958 pmid: 24777451
[7] Zhang Y J, Tan L B, Zhu Z F, Yuan L X, Xie D X, Sun C Q. TOND1 confers tolerance to nitrogen deficiency in rice. Plant J, 2015,81:367-376.
doi: 10.1111/tpj.12736 pmid: 25439309
[8] Fan X, Xie D, Chen J, Lu H, Xu Y, Ma C, Xu G. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant Sci, 2014,227:1-11.
doi: 10.1016/j.plantsci.2014.05.013 pmid: 25219300
[9] Liu X, Huang D, Tao J, Miller A J, Fan X, Xu G. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. New Phytol, 2014,204:74-80.
doi: 10.1111/nph.12986
[10] Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015,47:834-838.
doi: 10.1038/ng.3337 pmid: 26053497
[11] Zhang J Y, Liu Y X, Zhang N, Hu B, Jin T, Xu H R, Qin Y, Yan P X, Zhang X N, Guo X X, Hui J, Cao S Y, Wang X, Wang C, Wang H, Qu B Y, Fan G Y, Yuan L X, Ruben G O, Chu C C, Bai Y. NRT1.1B is associated with root macrobiotic composition and nitrogen use in field-grown rice. Nat Biotechnol, 2019,37:676-684.
doi: 10.1038/s41587-019-0104-4 pmid: 31036930
[12] Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller A J, Xu G. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA, 2016,113:7118-7123.
doi: 10.1073/pnas.1525184113 pmid: 27274069
[13] Li S, TianY H, Wu K, YeY F, Yu J P, Zhang J Q, Liu Q, Hu M Y, Li H, Tong Y P, Harberd N P, Fu X D. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018,560:595-600.
doi: 10.1038/s41586-018-0415-5 pmid: 30111841
[14] Gao Z Y, Wang Y F, Chen G, Zhang A P, Yang S L, Shang L G, Wang D Y, Ruan B, Liu C L, Jiang H Z, Dong G J, Zhu L, Hu J, Zhang G H, Zeng D, Guo L B, Xu G H, Teng S, Harberd N P, Qian Q. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun, 2019,10:5207.
doi: 10.1038/s41467-019-13110-8 pmid: 31729387
[15] Tang W J, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W L, Wang C M, Wan J M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019,10:5279.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193
[16] Zhang W H, Sun P Y, He Q, Shu F, Wang J, Deng H F. Fine mapping of GS2, a dominant gene for big grain rice. Crop J, 2013,1:160-165.
doi: 10.1016/j.cj.2013.10.003
[17] Che R H, Tong H N, Shi B H. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2016,2:15195.
doi: 10.1038/nplants.2015.195 pmid: 27250747
[18] Duan P G, Ni S, Wang J M, Zhang B L. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2016,2:15203.
doi: 10.1038/nplants.2015.203 pmid: 27250749
[19] Hu J, Wang Y X, Fang Y X. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015,8:1455-1465.
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814
[20] Li S C, Gao F Y, Xie K L. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J, 2016,14:2134-2146.
doi: 10.1111/pbi.12569 pmid: 27107174
[21] Sun P Y, Zhang W H, Wang Y H, Deng H F. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol, 2016,58:836-847.
pmid: 26936408
[22] Chen X L, Jiang L R, Zheng J S, Chen F Y, Wang T S, Wang M L, TaoY, Wang H C, Hong Z L, Huang Y M, Huang R Y. A missense mutation in large grain size 1 increases grain size and enhances cold tolerance in rice. J Exp Bot, 2019,70:3851-3866.
doi: 10.1093/jxb/erz192 pmid: 31020332
[23] 胡海涛, 郭龙彪. 我国水稻分子生物学发展现状及展望. 中国稻米, 2019,25(5):12-18.
Hu H T, Guo L B. Present situation, progress and prospects of development of rice molecular biology in China. Chin Rice, 2019,25(5):12-18 (in Chinese with English abstract).
[24] 黎裕, 王建康, 邱丽娟, 马有志, 李新海, 万建民. 中国作物分子育种现状与发展前景. 作物学报, 2010,36:1425-1430.
doi: 10.3724/SP.J.1006.2010.01425
Li Y, Wang J K, Qiu L J, Ma Y Z, Li X H, Wan J M. Crop molecular breeding in China: current status and perspectives. Acta Agron Sin, 2010,36:1425-1430 (in Chinese with English abstract).
[25] 程保山, 洪德林, 万志兵, 郭媛. 与粳稻BT型细胞质育性恢复基因连锁的实用SSR标记的筛选. 南京农业大学学报, 2011,34(1):1-7.
Cheng B S, Hong D L, Wan Z B, Guo Y. Screening of applicable SSR marker linked to restorer gene for BT-type cytoplasm in japonica rice. J Nanjing Agric Univ, 2011,34(1):1-7 (in Chinese with English abstract).
[26] 梁毅, 杨婷婷, 谭令辞, 文婷, 吴俊, 江南, 李智强, 戴良英, 王国梁, 刘雄伦. 水稻广谱抗瘟基因紧密连锁分子标记开发及其育种应用. 杂交水稻, 2013,28(4):63-68.
Liang Y, Yang T T, Tan L G, Wen T, Wu J, Jiang N, Li Z Q, Dai L Y, Wang G L, Liu X L. Development of the molecular marker tightly-linked with the broad-spectrum blast resistance gene Pigm and its breeding practice in rice. Hybrid Rice, 2013,28(4):63-68 (in Chinese with English abstract).
[27] Andersen J R, Liibberstedt T. Functional markers in plants. Trends Plant Sci, 2003,8:554-560.
doi: 10.1016/j.tplants.2003.09.010 pmid: 14607101
[28] 姚姝, 陈涛, 张亚东, 朱镇, 赵庆勇, 周丽慧, 赵凌, 赵春芳, 王才林. 利用分子标记辅助选择聚合水稻Pi-taPi-bWx-mq基因. 作物学报, 2017,43:1622-1631.
doi: 10.3724/SP.J.1006.2017.01622
Yao S, Chen T, Zhang Y D, Zhu Z, Zhao Q Y, Zhou L H, Zhao L, Zhao C F, Wang C L. Pyramiding Pi-ta, Pi-b, and Wx-mq genes by marker-assisted selection in rice(Oryza sativa L.). Acta Agron Sin, 2017,43:1622-1631 (in Chinese with English abstract).
[29] 马建, 马小定, 赵志超, 王帅, 王久林, 王洁, 程治军, 雷财林. 水稻抗稻瘟病基因Pi35功能性分子标记的开发及其应用. 作物学报, 2015,41:1779-1790.
doi: 10.3724/SP.J.1006.2015.01779
Ma J, Ma X D, Zhao Z C, Wang S, Wang J L, Wang J, Cheng Z J, Lei C L. Development and application of a functional marker of the blast resistance gene Pi35 in rice. Acta Agron Sin, 2015,41:1779-1790 (in Chinese with English abstract).
[30] 胡雪娇, 程灿, 涂荣剑. 水稻耐高温TT1基因的功能标记的开发与应用. 分子植物育种, 2019,17:7414-7419.
Hu X J, Cheng C, Tu R J. Development and application of functional marker for thermo tolerance gene TT1 in rice. Mol Plant Breed, 2019,17:7414-7419 (in Chinese with English abstract).
[31] 陈涛, 张善磊, 赵凌, 张亚东, 朱镇, 赵庆勇, 周丽慧, 姚姝, 赵春芳, 梁文化, 王才林. ALS抑制剂类除草剂抗性水稻功能标记的开发与验证, 中国水稻科学, 2018,32:137-145.
Chen T, Zhang S L, Zhao L, Zhang Y D, Zhu Z, Zhao Q Y, Zhou L H, Yao S, Zhao C F, Liang W H, Wang C L. Development and verification of a functional marker associated with resistance to ALS inhibitor herbicide. Chin J Rice Sci, 2018,32:137-145 (in Chinese with English abstract).
[32] Chen S H, Yang Y, Shi W W. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell, 2008,20:1850-1861.
doi: 10.1105/tpc.108.058917 pmid: 18599581
[33] Li W T, Zhu Z W, Chern M S. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017,170:114-126.
doi: 10.1016/j.cell.2017.06.008 pmid: 28666113
[34] Fan C C, Yu S B, Wang C G. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet, 2009,118:465-472.
doi: 10.1007/s00122-008-0913-1 pmid: 19020856
[35] Pan G, Zhang X Y, Liu K D. Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. Plant Mol Biol, 2006,61:933-943.
doi: 10.1007/s11103-006-0058-z
[36] Hu B, Wang W, Ou S J. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015,47:834-838.
pmid: 26053497
[37] Ma Y, Dai X Y, Xu YY. COLD1 Confers chilling tolerance in rice. Cell, 2015,160:1209-1221.
doi: 10.1016/j.cell.2015.01.046 pmid: 25728666
[38] 王军, 赵婕宇, 许扬, 范方军, 朱金燕, 李文奇, 王芳权, 费云燕, 仲维功, 杨杰. 水稻稻瘟病抗性基因Bsr-d1功能标记的开发和利用. 作物学报, 2018,44:1612-1620.
doi: 10.3724/SP.J.1006.2018.01612
Wang J, Zhao J Y, Xu Y, Fan F J, Zhu J Y, Li W Q, Wang F Q, Fei Y Y, Zhong W G, Yang J. Development and application of functional markers for rice blast resistance gene Bsr-d1 in rice. Acta Agron Sin, 2018,44:1612-1620 (in Chinese with English abstract).
[39] Ye S, Dhillon S, Ke X, Collins A R, Day I N. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res, 2001,29:E88.
doi: 10.1093/nar/29.17.e88 pmid: 11522844
[40] 陈涛, 骆名瑞, 张亚东, 朱镇, 赵凌, 赵庆勇, 周丽慧, 姚姝, 于新, 王才林. 利用四引物扩增受阻突变体系PCR技术检测水稻低直链淀粉含量基因Wx-mq. 中国水稻科学, 2013,27:529-534.
doi: 10.3969/j.issn.10017216.2013.05.010
Chen T, Luo M R, Zhang Y D, Zhu Z, Zhao L, Zhao Q Y, Zhou L H, Yao S, Yu X, Wang C L. Detection of Wx-mq gene for low-amylose content by tetra-primer amplification refractory mutation system PCR in rice. Chin J Rice Sci, 2013,27:529-534 (in Chinese with English abstract).
[41] Koutroubas S D, Ntanos D A. Genotypic differences for grain yield and nitrogen utilization in indica and japonica rice under Mediterranean conditions. Field Crops Res, 2003,83:251-260.
doi: 10.1016/S0378-4290(03)00067-4
[42] Wang F M, Matsuoka M. Improved nutrient use gives cereal crops a boost. Nature, 2018,560:563-566.
doi: 10.1038/d41586-018-05928-x pmid: 30143754
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!