欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2325-2338.doi: 10.3724/SP.J.1006.2022.12043

• 耕作栽培·生理生化 • 上一篇    下一篇

外源钼对水稻产量形成及氮素利用的影响

陈志青(), 冯源, 王锐, 崔培媛, 卢豪, 魏海燕, 张海鹏*(), 张洪程   

  1. 农业农村部长江流域稻作技术创新中心 / 江苏省作物栽培生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心, 江州225009
  • 收稿日期:2021-06-21 接受日期:2021-11-29 出版日期:2022-09-12 网络出版日期:2021-12-15
  • 通讯作者: 张海鹏
  • 作者简介:E-mail: MX120190550@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0300503);国家自然科学基金项目(31901447);国家自然科学基金项目(41701329);国家现代农业产业技术体系建设专项(CARS-01-27);江苏省“双创博士”(JSSCBS20211062)

Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice

CHEN Zhi-Qing(), FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng*(), ZHANG Hong-Cheng   

  1. Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture and Rural Affaris / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-06-21 Accepted:2021-11-29 Published:2022-09-12 Published online:2021-12-15
  • Contact: ZHANG Hai-Peng
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300503);National Natural Science Foundation of China(31901447);National Natural Science Foundation of China(41701329);China Agriculture Research System(CARS-01-27);Innovation and Entrepreneurship Program of Jiangsu Province(JSSCBS20211062)

摘要:

为探明纳米钼和离子钼对水稻产量形成和氮素利用的影响, 以南粳9108为试验对象, 采用盆栽试验研究了纳米钼和离子钼在0、180、225、270和315 kg N hm-2条件下对水稻的产量、产量构成、干物质积累及氮素积累利用的影响。研究结果表明, 纳米钼和离子钼的施用均能有效提高水稻产量。相同氮肥施用水平下, 施用纳米钼处理的水稻产量均显著高于施用离子钼处理。水稻生育后期叶面积指数和干物质的积累量显著高于施用离子钼处理。施用纳米钼能够改善水稻生育后期干物质形成, 提高抽穗后剑叶SPAD值、光合势和净光合速率, 有效促进了水稻生育后期干物质的合成及在籽粒中的积累, 最终实现促进水稻增产的目的。相同氮肥施用水平下, 离子钼和纳米钼的施用均提高了水稻各器官的氮浓度和氮积累量, 并促进了氮肥偏生产力、氮素农学利用率、氮素生理利用率和氮素吸收利用率的提高。

关键词: 水稻, 纳米钼, 干物质积累, 产量构成, 氮素利用

Abstract:

To explore the effects of nano-molybdenum (Nano-Mo) and ionic-molybdenum (Ionic-Mo) on rice yield formation and nitrogen utilization, pot experiments were conducted at nitrogen fertilizer application level of 0, 180, 225, 270, and 315 kg N hm-2 using Nanjing 9108 as the test object. Rice yield, yield composition, dry matter accumulation, nitrogen accumulation, and utilization were analyzed. Results showed that the application of Nano-Mo and Ionic-Mo could effectively increase rice yield compared with non-molybdenum treatments. Rice yields of Nano-Mo treatments were significantly higher than those of Ionic-Mo treatments at the same N application level. Moreover, the same trend was also observed in LAI and the accumulation of dry matter in the late stage of rice growth. The application of Nano-Mo could improve the dry matter formation in the late stage of rice growth by increasing the SPAD value, photosynthetic potential, and net photosynthetic rate of the flag leaf after heading. Nano-Mo application promoted the synthesis of dry matter and the accumulation in the grain in the late stage of rice growth, and ultimately increased rice yield. In the same level of nitrogen fertilizer application, compared with non-molybdenum treatments Nano-Mo and Ionic-Mo application both increased the nitrogen concentration and nitrogen accumulation in rice stalks, leaves and grains, and promoted the partial productivity of nitrogen fertilizer, nitrogen agronomic utilization rate, nitrogen physiological utilization rate, and nitrogen absorption and utilization.

Key words: rice, nano-molybdenum, dry matter accumulation, yield composition, nitrogen utilization

表1

外源钼施用对水稻产量及其构成因素的影响"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
单位面积穗数
Panicle number
(×104 hm-2)
每穗粒数
Spikelet per
panicle
结实率
Seed-setting rate
(%)
千粒重
1000-grain weight
(g)
2019产量
Grain yield
(t hm-2)
2020产量
Grain yield
(t hm-2)
Non-Mo 0N 266.8 d 106.0 e 91.1 a 26.84 bc 6.27 e 5.83 d
12N 357.2 c 115.1 d 90.8 a 26.67 c 9.64 d 9.44 c
15N 368.8 bc 122.5 c 91.2 a 26.88 bc 9.65 d 9.46 c
18N 376.4 b 128.1 bc 91.5 a 26.97 bc 9.93 d 9.64 c
21N 385.0 ab 131.9 b 91.6 a 27.14 b 10.67 bc 10.35 b
平均 Mean 350.8 120.7 91.2 26.90 9.23 8.94
Ionic-Mo 0N 267.6 d 109.2 de 91.2 a 26.93 bc 6.32 e 5.99 d
12N 366.2 bc 118.5 cd 91.5 a 27.26 b 10.10 d 9.75 c
15N 375.0 bc 125.9 bc 91.8 a 27.45 ab 10.32 cd 9.98 bc
18N 383.2 ab 132.1 b 92.1 a 27.49 ab 10.59 c 10.35 b
21N 389.6 ab 137.3 a 92.3 a 27.60 ab 11.08 b 10.71 ab
平均 Mean 356.3 124.6 91.8 27.35 9.68 9.36
Nano-Mo 0N 272.4 d 112.0 de 91.4 a 27.02 bc 6.42 e 6.02 d
12N 371.4 bc 128.4 bc 91.5 a 27.29 b 10.21 cd 9.80 c
15N 378.6 b 130.2 b 91.9 a 27.50 ab 10.38 cd 10.10 bc
18N 387.4 ab 137.1 a 92.4 a 27.69 ab 10.74 bc 10.40 b
21N 398.0 a 140.5 a 92.7 a 27.83 a 11.69 a 11.23 a
平均 Mean 361.6 129.6 92.0 27.47 9.89 9.51
钼肥处理 Mo * ** ns ns ** **
氮肥用量 N ** ** ns ns ** **
钼肥×氮肥 Mo×N ns ns ns ns ns ns

图1

外源钼施用对水稻茎蘖动态的影响 处理和缩写同表1。"

图2

外源钼施用对水稻茎蘖成穗率的影响 处理和缩写同表1。"

表2

外源钼施用对水稻不同时期干物质积累量及比例的影响"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
移栽-拔节TS-JS 拔节-抽穗JS-HS 抽穗-成熟HS-MS
积累量
Accumulation
(t hm-2)
比例
Ratio
(%)
积累量
Accumulation
(t hm-2)
比例
Ratio
(%)
积累量
Accumulation
(t hm-2)
比例
Ratio
(%)
Non-Mo 0N 3.83 f 28.54 ab 5.33 d 39.68 a 4.27 f 31.77 g
12N 5.86 c 27.36 b 8.50 c 39.73 a 7.04 e 32.91 f
15N 5.72 d 26.42 bc 8.54 c 39.46 a 7.38 de 34.12 e
18N 5.74 d 25.92 c 8.66 c 39.10 b 7.74 d 34.98 d
21N 6.13 ab 26.12 bc 9.18 b 39.11 b 8.16 c 34.76 d
平均 Mean 5.45 26.87 8.04 39.42 6.92 33.71
Ionic-Mo 0N 3.95 e 28.88 a 5.33 d 39.03 bc 4.39 f 32.09 g
12N 5.89 c 26.73 bc 8.69 c 39.44 a 7.46 d 33.83 e
15N 5.70 d 25.50 cd 8.72 c 38.96 bc 7.95 cd 35.54 c
18N 5.85 c 25.11 cd 8.86 bc 38.07 de 8.57 bc 36.82 b
21N 6.07 b 24.85 cd 9.47 ab 38.80 c 8.88 b 36.35 b
平均 Mean 5.49 26.19 8.22 38.82 7.47 34.98
Nano-Mo 0N 3.84 f 27.78 ab 5.49 d 39.67 a 4.50 f 32.54 fg
12N 6.04 b 27.27 b 8.65 c 39.08 bc 7.45 d 33.65 e
15N 5.73 d 25.26 cd 8.68 c 38.29 d 8.26 c 36.45 b
18N 5.81 cd 24.49 d 8.97 bc 37.81 e 8.95 b 37.70 a
21N 6.20 a 24.45 d 9.69 a 38.17 d 9.48 a 37.37 a
平均 Mean 5.52 25.85 8.30 38.60 7.73 35.54
钼肥处理 Mo ns ** * ns ** **
氮肥用量 N ** ** ** ns ** **
钼肥×氮肥 Mo×N ns ns ns ns ** ns

表3

外源钼施用对水稻叶面积指数的影响"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
拔节期
Jointing
抽穗期
Heading
成熟期
Maturity
叶面积衰减速率
Decreasing rate of leaf area (LAI d-1)
Non-Mo 0N 2.81 d 4.97 d 2.03 f 0.0588 d
12N 4.17 c 7.05 c 3.20 d 0.0770 bc
15N 4.21 c 7.16 bc 3.20 d 0.0791 bc
18N 4.46 b 7.43 bc 3.28 d 0.0830 ab
21N 4.66 ab 7.77 ab 3.52 c 0.0849 a
平均 Mean 4.06 6.89 3.05 0.0770
Ionic-Mo 0N 2.85 d 5.05 d 2.30 e 0.0549 e
12N 4.21 c 7.13 c 3.43 cd 0.0741 c
15N 4.23 c 7.30 bc 3.50 c 0.0760 c
18N 4.55 ab 7.44 bc 3.61 bc 0.0766 c
21N 4.68 a 7.95 a 3.75 b 0.0840 ab
平均 Mean 4.10 6.98 3.32 0.0731
Nano-Mo 0N 2.85 d 5.00 d 2.29 e 0.0543 e
12N 4.15 c 7.20 bc 3.46 c 0.0748 c
15N 4.35 bc 7.27 bc 3.53 c 0.0747 c
18N 4.50 ab 7.51 b 3.74 b 0.0753 c
21N 4.66 ab 7.97 a 3.94 a 0.0806 b
平均 Mean 4.10 6.99 3.39 0.0719
钼肥处理 Mo ns ns ** **
氮肥用量 N ** ** ** **
钼肥×氮肥 Mo×N ns ns ns ns

表4

外源钼施用对水稻光合势的影响"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
移栽-拔节
TS-JS
拔节-抽穗
JS-HS
抽穗-成熟
HS-MS
Non-Mo 0N 91.28 d 136.08 d 174.85 f
12N 135.48 c 196.32 c 256.19 d
15N 136.83 c 198.96 c 259.05 d
18N 144.95 b 208.08 bc 267.75 c
21N 151.52 ab 217.53 ab 282.31 b
平均 Mean 132.01 191.39 248.03
Ionic-Mo 0N 92.74 d 138.26 d 183.76 e
12N 136.76 c 198.48 c 264.01 cd
15N 137.59 c 201.90 bc 270.20 c
18N 147.76 ab 209.76 b 276.29 bc
21N 152.16 a 221.11 a 292.65 a
平均 Mean 133.40 193.90 257.38
Nano-Mo 0N 92.71 d 137.41 d 182.14 e
12N 134.99 c 198.62 c 266.30 c
15N 141.35 bc 203.29 bc 270.00 c
18N 146.10 ab 210.09 b 281.31 b
21N 151.35 ab 220.98 a 297.84 a
平均 Mean 133.30 194.08 259.52
钼肥处理 Mo ns ns **
氮肥用量 N ** ** **
钼肥×氮肥 Mo×N ns ns ns

表5

外源钼施用对水稻SPAD值和净光合速率的影响"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
SPAD值
SPAD value
净光合速率
Net photosynthetic rate (μmol m-2 s-1)
齐穗后5 d
5 days after full heading
齐穗后25 d
25 days after full heading
衰减率
Attenuation rate (%)
齐穗后5 d
5 days after full heading
齐穗后25 d
25 days after full heading
衰减率
Attenuation rate (%)
Non-Mo 0N 37.61 c 28.70 e 31.05 a 17.85 d 11.70 e 52.56 a
12N 41.79 b 32.41 c 28.94 bc 19.21 cd 12.92 cd 48.75 b
15N 42.56 b 33.18 bc 28.27 bc 19.81 c 13.37 c 48.19 bc
18N 43.19 ab 33.90 bc 27.40 cd 20.30 bc 13.73 bc 47.85 bc
21N 43.91 ab 34.78 ab 26.25 d 20.89 b 14.19 b 47.16 bc
平均 Mean 41.81 32.59 28.38 19.61 13.18 48.90
Ionic-Mo 0N 38.76 c 29.86 de 29.81 ab 18.69 d 12.31 de 51.80 a
12N 42.90 ab 33.52 bc 27.98 bc 19.84 c 13.38 c 48.23 bc
15N 43.31 ab 34.11 b 26.97 cd 20.31 bc 13.77 bc 47.48 bc
18N 44.10 ab 34.93 ab 26.25 d 20.64 bc 14.08 bc 46.66 bc
21N 44.38 ab 35.34 ab 25.58 d 21.44 ab 14.69 ab 45.94 c
平均 Mean 42.69 33.55 27.32 20.18 13.65 48.02
Nano-Mo 0N 39.37 c 30.49 d 29.12 b 19.07 cd 12.65 d 50.74 ab
12N 43.68 ab 34.21 b 27.68 c 19.85 c 13.40 c 48.20 bc
15N 44.03 ab 34.81 ab 26.49 cd 20.67 bc 14.02 bc 47.41 bc
18N 44.45 ab 35.25 ab 26.10 d 21.39 ab 14.66 ab 45.90 c
21N 44.96 a 35.94 a 25.10 d 22.17 a 15.27 a 45.21 c
平均 Mean 43.30 34.14 26.90 20.63 14.00 47.49
钼肥处理 Mo * ** ** ** ** *
氮肥用量 N ** ** ** ** ** **
钼肥×氮肥 Mo×N ns ns ns ns ns ns

表6

外源钼施用对水稻氮素积累的影响"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
氮浓度N concentration (mg g-1) 氮积累量N accumulation (kg hm-2)

Stem

Leaf
籽粒
Grain

Stem

Leaf
籽粒
Grain
总株
Total
Non-Mo 0N 3.1 f 7.3 d 8.7 d 14.4 h 11.5 g 66.0 f 91.8 g
12N 3.5 de 7.9 cd 9.7 c 21.4 g 20.2 f 118.9 e 160.5 f
15N 3.9 cd 8.3 c 10.3 b 25.8 ef 23.4 e 134.1 cd 183.4 d
18N 4.4 b 8.8 b 10.7 ab 30.7 c 30.0 bc 144.7 bc 205.4 bc
21N 4.8 a 9.0 b 10.7 ab 33.8 b 29.4 c 146.3 bc 209.5 b
平均 Mean 3.9 8.3 10.0 25.2 22.9 122.0 170.1
Ionic-Mo 0N 3.2 e 7.5 d 9.1 d 15.0 h 12.4 g 70.1 f 97.4 g
12N 3.8 cd 8.1 c 9.9 bc 24.7 f 21.1 f 123.6 de 169.3 ef
15N 4.2 b 8.7 bc 10.4 b 28.5 d 25.4 d 140.1 c 194.0 c
18N 4.7 a 9.3 ab 10.9 ab 33.2 b 30.7 b 150.1 b 213.9 b
21N 4.9 a 9.4 ab 10.8 ab 36.0 a 32.1 a 152.3 ab 220.4 ab
平均 Mean 4.2 8.6 10.2 27.5 24.3 127.2 179.0
Nano-Mo 0N 3.3 e 7.5 d 9.2 d 15.6 h 12.3 g 72.1 f 100.1 g
12N 3.7 d 8.0 c 10.2 bc 23.9 f 20.8 f 129.2 d 173.9 e
15N 4.0 c 8.8 b 10.7 ab 26.2 e 25.0 d 148.3 b 199.5 c
18N 4.7 a 9.7 a 11.1 a 34.1 b 30.7 b 157.0 a 221.8 ab
21N 4.8 a 9.6 a 10.8 ab 35.7 a 33.0 a 157.8 a 226.5 a
平均 Mean 4.1 8.7 10.4 27.1 24.3 132.9 184.3
钼肥处理 Mo ** ** * ** ** ** **
氮肥用量 N ** ** ** ** ** ** **
钼肥×氮肥 Mo×N ns ns ns * * ns ns

表7

外源钼施用对水稻抽穗期至成熟期群体各器官氮素转运的影响"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
茎鞘 Stem-sheath 叶片 Leaf 穗部氮增加量
N increased
in panicle
(kg hm-2)
氮转运贡献率
Contribution
rate of N
translocation
(%)
氮转运量
N translocation
(kg hm-2)
氮转运率
Efficiency of N translocation
(%)
氮转运量
N translocation
(kg hm-2)
氮转运率
Efficiency of
N translocation
(%)
Non-Mo 0N 18.7 e 56.57 a 30.1 d 72.42 a 51.1 f 95.47 a
12N 24.8 d 53.65 b 40.0 c 66.42 b 96.3 e 67.23 c
15N 24.3 d 48.52 cd 40.8 c 63.56 bc 106.3 d 61.28 de
18N 26.2 c 46.03 d 43.2 ab 59.02 cd 112.9 c 61.50 de
21N 28.2 a 45.49 de 43.5 a 59.70 cd 113.4 bc 63.25 d
平均 Mean 24.5 50.05 39.5 64.22 96.0 69.75
Ionic-Mo 0N 19.1 e 55.99 ab 30.7 d 71.27 a 53.5 f 93.08 ab
12N 24.1 d 49.39 c 39.8 c 65.34 b 100.2 e 63.74 d
15N 24.9 d 46.64 d 41.3 bc 61.91 c 111.2 cd 59.54 e
18N 26.5 bc 44.45 de 43.1 ab 58.44 d 118.3 b 58.88 ef
21N 27.7 ab 43.46 e 43.9 a 57.78 d 118.3 b 60.49 de
平均 Mean 24.5 47.99 39.8 62.95 100.3 67.15
Nano-Mo 0N 19.5 e 55.43 ab 30.6 d 71.28 a 54.8 f 91.28 b
12N 23.6 d 49.68 c 39.6 c 65.58 b 103.2 de 61.19 de
15N 23.6 d 47.40 cd 41.0 c 62.09 c 116.3 bc 55.54 f
18N 26.1 c 43.40 e 43.2 ab 58.49 d 124.8 a 55.59 f
21N 26.6 bc 42.70 e 45.0 a 57.74 d 121.6 ab 58.92 ef
平均 Mean 23.9 47.72 39.9 63.04 104.1 64.50
钼肥处理 Mo ns ** ns ns ** **
氮肥用量 N ** ** ** ** ** **
钼肥×氮肥 Mo×N ns ns ns ns ns ns

表8

外源钼施用对水稻氮素利用的影响"

钼肥处理
Mo fertilizer
treatment
氮肥用量
N application
rate
氮肥偏生产力
PFP
(kg kg-1)
氮素籽粒生产效率
NUEG
(kg kg-1)
氮素农学利用率
AE
(kg kg-1)
氮素生理利用率
PNUE
(kg kg-1)
氮素吸收利用率
NRE
(%)
Non-Mo 12N 53.00 b 59.44 a 19.41 b 50.88 a 38.16 d
15N 42.46 d 52.10 b 15.59 e 38.32 c 40.68 c
18N 36.24 f 47.63 c 13.85 f 32.91 e 42.08 bc
21N 33.37 g 50.18 bc 14.18 f 37.96 c 37.36 d
平均 Mean 41.27 52.34 15.76 40.02 39.57
Ionic-Mo 12N 55.13 ab 58.61 a 20.95 a 52.45 a 39.94 cd
15N 45.13 c 52.35 b 17.78 c 41.45 b 42.90 b
18N 38.79 e 48.97 c 16.00 de 37.10 cd 43.13 ab
21N 34.59 fg 49.44 c 15.06 e 38.58 c 39.04 cd
平均 Mean 43.41 52.34 17.45 42.39 41.25
Nano-Mo 12N 55.61 a 57.57 a 21.03 a 51.32 a 40.98 bc
15N 45.51 c 51.33 bc 17.85 c 40.41 bc 44.17 ab
18N 39.14 e 47.65 c 16.09 de 35.70 d 45.07 a
21N 36.39 f 50.61 bc 16.63 d 41.45 b 40.12 cd
平均 Mean 44.16 51.79 17.90 42.22 42.59
钼肥处理 Mo ** ns ** ** **
氮肥用量 N ** ** ** ** **
钼肥×氮肥 Mo×N ns ns ns * ns
[1] 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015, 48: 3404-3414.
Zhu D F, Zhang Y P, Chen H Z, Xiang J, Zhang Y K. Innovation and practice of high-yield rice cultivation technology in China. Sci Agric Sin, 2015, 48: 3404-3414 (in Chinese with English abstract).
[2] 王玉雯, 郭九信, 孔亚丽, 张瑞卿, 宋立新, 刘振刚, 张俊, 王建中, 郭世伟. 氮肥优化管理协同实现水稻高产和氮肥高效. 植物营养与肥料学报, 2016, 22: 1157-1166.
Wang Y W, Guo J X, Kong Y L, Zhang R Q, Song L X, Liu Z G, Zhang J, Wang J Z, Guo S W. Nitrogen optimize management achieves high grain yield and enhances nitrogen use efficiency of rice. Plant Nutr Fert Sci, 2016, 22: 1157-1166. (in Chinese with English abstract)
[3] 李荣刚, 崔玉亭, 程序. 苏南太湖地区水稻氮肥施用与环境可持续发展. 耕作与栽培, 1999, 19(4): 49-50.
Li R G, Cui Y T, Cheng X. Rice nitrogen fertilizer application and environmental sustainable development in Taihu Lake region. Till & Cult, 1999, 19(4): 49-50. (in Chinese)
[4] 周雯雯, 贾浩然, 张月, 李卫, 李保同, 汤丽梅. 不同类型新型肥料对双季稻产量、氮肥利用率和经济效益的影响. 植物营养与肥料学报, 2020, 26: 657-668.
Zhou W W, Jia H R, Zhang Y, Li W, Li B T, Tang L M. Effects of different new types of fertilizer on yield, nitrogen use efficiency and economic benefit of double cropping rice. Plant Nutr Fert Sci, 2020, 26: 657-668. (in Chinese with English abstract)
[5] 解文孝, 李建国, 刘军, 吕军, 梁传斌, 潘争艳, 李蒙杉, 史鸿儒. 不同土壤背景下秸秆还田量对水稻产量构成及氮吸收利用的影响. 中国土壤与肥料, 2021, 53: 248-255.
Xie W X, Li J G, Liu J, Lyu J, Liang C B, Pan Z Y, Li M S, Shi H R. Effects of straw returning amounts on rice yield components and N uptake of different soil background. China Soils Fert, 2021, 53: 248-255. (in Chinese with English abstract)
[6] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrients efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924. (in Chinese with English abstract)
[7] 马源, 王巍, 王景峰. 水稻生产中硅肥和锌肥的作用及施用方法. 现代化农业, 2016, (7): 16-17.
Ma Y, Wang W, Wang J F. The function and application method of silicon fertilizer and zinc fertilizer in rice production. Mod Agric, 2016, (7): 16-17. (in Chinese)
[8] 蔡祖聪, 钦绳武. 作物N、P、K含量对于平衡施肥的诊断意义. 植物营养与肥料学报, 2006, 12: 473-478.
Cai Z C, Qin S W. Diagnosis of balanced fertilization by N, P, K contents in grain and straw of wheat and maize. Plant Nutr Fert Sci, 2006, 12: 473-478. (in Chinese with English abstract)
[9] 杨志珍, 黄河. 施用微量元素肥料对水稻产量与品质的影响. 湖南农业科学, 2003, (1): 34-35.
Yang Z Z, Huang H. Effect of application of trace element fertilizers on rice yield and quality. Hunan Agric Sci, 2003, (1): 34-35. (in Chinese)
[10] 秦玉楠. 钼肥及其在农业上的增产效果. 中国钼业, 1993, (5): 26-29.
Qin Y N. Molybdenum fertilizer and its effect on increasing production in agriculture. Chin Mo Ind, 1993, (5): 26-29. (in Chinese)
[11] Bortels H. Molybdenum as catalyzer in biological nitrogen- fixation. Arch Mikrobiol, 1930, 1: 333-342.
doi: 10.1007/BF00510471
[12] Li Y D, Jin Q, Yang D S, Cui J H. Molybdenum sulfide induce growth enhancement effect of rice (Oryza sativa L.) through regulating the synthesis of chlorophyll and the expression of aquaporin gene. J Agric Food Chem, 2018, 66: 4013-4021.
doi: 10.1021/acs.jafc.7b05940
[13] 杜应琼, 王运华, 王治荣, 魏文学. 两种氮水平下施钼对小麦产量和生长发育的影响. 华中农业大学学报, 1994, 13: 378-383.
Du Y Q, Wang Y H, Wang Z R, Wei W X. Effects of Molybdenum application on wheat yield and growth under two nitrogen levels. J Huazhong Agric Univ, 1994, 13: 378-383 (in Chinese with English).
[14] Alam F, Kim T Y, Kim S Y. Effect of molybdenum on nodulation, plant yield and nitrogen uptake in hairy vetch (Vicia villosa Roth). Soil Sci Plant Nutr, 2015, 61: 664-675.
doi: 10.1080/00380768.2015.1030690
[15] 门中华, 李生秀. 钼对冬小麦硝态氮代谢的影响. 植物营养与肥料学报, 2005, 11: 205-210.
Men Z H, Li S X. Effect of molybdenum on nitrate nitrogen metabolism of winter wheat. Plant Nutr Fert Sci, 2005, 11: 205-210. (in Chinese with English abstract)
[16] 陶龙兴, 谈惠娟, 王熹, 曹立勇, 宋建, 程式华. 高温胁迫对国稻6号开花结实习性的影响. 作物学报, 2008, 34: 669-674.
doi: 10.3724/SP.J.1006.2008.00669
Tao L X, Tan H J, Wang X, Cao L Y, Song J, Cheng S H. Effects of high temperature stress on flowering and grain-setting characteristics for Guodao 6. Acta Agron Sin, 2008, 34: 669-674. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00669
[17] 胡雅杰, 钱海军, 曹伟伟, 邢志鹏, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 机插方式和密度对不同穗型水稻品种产量及其构成的影响. 中国水稻科学, 2016, 30: 493-506.
doi: 10.16819/j.1001-7216.2016.6015
Hu Y J, Qian H J, Cao W W, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Effect of different mechanical transplantation methods and density on yield and its components of different panicle-typed rice. Chin J Rice Sci, 2016, 30: 493-506. (in Chinese with English abstract)
[18] 黄丽芬, 全晓艳, 张蓉, 袁毅, 赵伟, 姜玲玲, 施金琦, 庄恒扬. 光氮及其互作对水稻干物质积累与分配的影响. 中国水稻科学, 2014, 28: 167-176.
Huang L F, Quan X Y, Zhang R, Yuan Y, Zhao W, Jiang L L, Shi J Q, Zhuang H Y. Interactive effects of light intensity and nitrogen supply on dry matter production and distribution of rice. Chin J Rice Sci, 2014, 28: 167-176. (in Chinese with English abstract)
[19] 邓飞, 王丽, 刘利, 刘代银, 任万军, 杨文钰. 不同生态条件下栽培方式对水稻干物质生产和产量的影响. 作物学报, 2012, 38: 1930-1942.
doi: 10.3724/SP.J.1006.2012.01930
Deng F, Wang L, Liu L, Liu D Y, Ren W J, Yang W Y. Effects of cultivation methods on dry matter production and yield of rice under different ecological conditions. Acta Agron Sin, 2012, 38: 1930-1942. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01930
[20] 杨林生, 张宇亭, 杨柳青, 谢军, 杨敏, 张跃强, 石孝均. 不同氮钾水平对水稻干物质累积、转运及产量的影响. 中国土壤与肥料, 2019, 51(4): 89-95.
Yang L S, Zhang Y T, Yang L Q, Xie J, Yang M, Zhang Y Q, Shi X J. Effects of different nitrogen and potassium levels on dry matter accumulation, transport and yield of rice. China Soil Fert, 2019, 51(4): 89-95. (in Chinese with English abstract)
[21] 杨惠杰, 李义珍, 杨仁崔, 姜照伟, 郑景生. 超高产水稻的干物质生产特性研究. 中国水稻科学, 2001, 15: 265-270.
Yang H J, Li Y Z, Yang R C, Jiang Z W, Zheng J S. Dry matter production characteristics of Super high yielding rice. Chin J Rice Sci, 2001, 15: 265-270. (in Chinese with English abstract)
[22] 马均, 朱庆森, 马文波, 田彦华, 杨建昌, 周开达. 重穗型水稻光合作用、物质积累与运转的研究. 中国农业科学, 2003, 36: 375-381.
Ma J, Zhu Q S, Ma W B, Tian Y H, Yang J C, Zhou K D. Studies on the photosynthetic characteristics and accumulation and transformation of assimilation product in heavy panicle type of rice. Sci Agric Sin, 2003, 36: 375-381. (in Chinese with English abstract)
[23] 敖和军, 王淑红, 邹应斌, 彭少兵, 唐启源, 方远祥, 肖安民, 陈玉梅, 熊昌明. 超级杂交稻干物质生产特点与产量稳定性研究. 中国农业科学, 2008, 41: 1927-1936.
Ao H J, Wang S H, Zou Y B, Peng S B, Tang Q Y, Fang Y X, Xiao A M, Chen Y M, Xiong C M. Study on yield stability and dry matter characteristics of super hybrid rice. Sci Agric Sin, 2008, 41: 1927-1936. (in Chinese with English abstract)
[24] 凌宇飞, 王锐, 陈志青, 杨硕, 崔培媛, 邢志鹏, 张海鹏, 张洪程. 纳米钼对水稻产量及其形成特征影响的差异. 扬州大学学报(农业与生命科学版), 2020, 41(6): 9-14.
Ling Y F, Wang R, Chen Z Q, Yang S, Cui P Y, Xing Z P, Zhang H P, Zhang H C. Effects of nano-molybdenum on rice yield and yield components. J Yangzhou Univ (Agric Life Sci Edn), 2020, 41(6): 9-14. (in Chinese with English abstract)
[25] 凌启鸿, 张洪程, 蔡建中, 苏祖芳, 凌励. 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993, 26(6): 1-11.
Ling Q H, Zhang H C, Cai J Z, Su Z F, Ling L. Investigation on the population quality of high yield and its optimizing control programme in rice. Sci Agric Sin, 1993, 26(6): 1-11. (in Chinese with English abstract)
[26] 白亚青, 郭美俊, 张伟莉, 张宇杰, 郭平毅. 叶面喷施钼酸铵对谷子光合特性及产量的影响. 山西农业科学, 2020, 48: 502-504.
Bai Y Q, Guo M J, Zhang W L, Zhang Y J, Guo P Y. Effect of Foliar Application of ammonium molybdate on photosynthetic characteristics and yield of millet. J Shanxi Agric Sci, 2020, 48: 502-504. (in Chinese with English abstract)
[27] 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 杭杰, 马群, 张胜飞, 张庆, 刘艳阳. 不同水稻氮利用效率基因型的物质生产与积累特性. 作物学报, 2007, 33: 1802-1809.
Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Hang J, Ma Q, Zhang S F, Zhang Q, Liu Y Y. Characteristics of matter production and accumulation of rice genotypes with different nitrogen use efficiency. Acta Agron Sin, 2007, 33: 1802-1809. (in Chinese with English abstract)
[28] 侯云鹏, 韩立国, 孔丽丽, 尹彩侠, 秦裕波, 李前, 谢佳贵. 不同施氮水平下水稻的养分吸收、转运及土壤氮素平衡. 植物营养与肥料学报, 2015, 21: 836-845.
Hou Y P, Han L G, Kong L L, Yin C X, Qin Y B, Li Q, Xie J G. Nutrient absorption, translocation in rice and soil nitrogen equilibrium under different nitrogen application doses. Plant Nutr Fert Sci, 2015, 21: 836-845. (in Chinese with English abstract)
[29] Tirol-Padre A, Ladha J K, Singh U, Laureles E, Punzalan G, Akita S. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res, 1996, 46: 127-143.
doi: 10.1016/0378-4290(95)00095-X
[30] Inthapanya I P, Sihavong P, Sihathep V, Chanphengsay M, Ukai S F, Basnayake J. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilized condition. Field Crops Res, 2000, 65: 57-68.
doi: 10.1016/S0378-4290(99)00070-2
[31] 董桂春, 王熠, 于小凤, 周娟, 彭斌, 李进前, 田昊, 张燕, 袁秋梅, 王余龙. 不同生育期水稻品种氮素吸收利用的差异. 中国农业科学, 2011, 44: 4570-4582.
Dong G C, Wang Y, Yu X F, Zhou J, Peng B, Li J Q, Tian H, Zhang Y, Yuan Q M, Wang Y L. Differences in nitrogen absorption and utilization of rice varieties in different growth periods. Sci Agric Sin, 2011, 44: 4570-4582. (in Chinese with English abstract)
[32] Liu L, Xiao W, Li L, Li D M, Gao D S, Zhu C Y, Fu X L. Effect of exogenously applied molybdenum on its absorption and nitrate metabolism in strawberry seedlings. Plant Physiol Biochem, 2017, 115: 200-211.
doi: 10.1016/j.plaphy.2017.03.015
[33] 董桂春, 王余龙, 张传胜, 张岳芳, 陈培峰, 杨连新, 黄建晔, 龙银成. 氮素籽粒生产效率不同的籼稻品种物质生产和分配的基本特点. 作物学报, 2007, 33: 137-142.
Dong G C, Wang Y L, Zhang C S, Zhang Y F, Chen P F, Yang L X, Huang J Y, Long Y C. Characteristics of dry matter accumulation and distribution in conventional indica rice cultivars with different nitrogen use efficiency for grain output. Acta Agron Sin, 2007, 33: 137-142. (in Chinese with English abstract)
[34] 吴越, 胡静, 陈琛, 张家星, 李万元, 唐东南, 仲军, 羊彬, 朱正康, 姚友礼, 王余龙, 董桂春. 江苏省早熟晚粳高产水稻新品种氮素吸收利用特征及成因分析. 中国水稻科学, 2017, 31: 619-630.
doi: 10.16819/j.1001-7216.2017.7014
Wu Y, Hu J, Chen C, Zhang J X, Li W Y, Tang D N, Zhong J, Yang B, Zhu Z K, Yao Y L, Wang Y L, Dong G C. Nitrogen absorption and utilization characteristics of the newly approved early-maturity late japonica rice cultivars in Jiangsu province. Chin J Rice Sci, 2017, 31: 619-630 (in Chinese with English abstract).
[35] 江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004, 37: 490-496.
Jiang L G, Cao W X, Gan X Q, Wei S Q, Xu J Y, Dong D F, Chen N P, Lu F Y, Qin H D. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Sci Agric Sin, 2004, 37: 490-496. (in Chinese with English abstract)
[36] 刘立军, 桑大志, 刘翠莲, 王志琴, 杨建昌, 朱庆森. 实时实地氮肥管理对水稻产量和氮素利用率的影响. 中国农业科学, 2003, 36: 1456-1461.
Liu L J, Sang D Z, Liu C L, Wang Z Q, Yang J C, Zhu Q S. Effects of real-time and site-specific nitrogen managements on rice yield and nitrogen use efficiency. Sci Agric Sin, 2003, 36: 1456-1461. (in Chinese with English abstract)
[1] 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220.
[2] 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264.
[3] 邬腊梅, 杨浩娜, 王立峰, 李祖任, 邓希乐, 柏连阳. 除草型麻地膜在水稻秧田的应用及对水稻的影响[J]. 作物学报, 2022, 48(9): 2315-2324.
[4] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[5] 桑国庆, 唐志光, 毛克彪, 邓刚, 王靖文, 李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例[J]. 作物学报, 2022, 48(9): 2409-2420.
[6] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[7] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[8] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028-2040.
[9] 委刚, 陈单阳, 任德勇, 杨宏霞, 伍靖雯, 冯萍, 王楠. 水稻细长秆突变体sr10的鉴定与基因定位[J]. 作物学报, 2022, 48(8): 2125-2133.
[10] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征[J]. 作物学报, 2022, 48(8): 2053-2065.
[11] 陈驰, 陈代波, 孙志豪, 彭泽群, 贺登美, 张迎信, 程海涛, 于萍, 马兆慧, 宋建, 曹立勇, 程式华, 孙廉平, 占小登, 吕文彦. 水稻典败型隐性核雄性不育突变体ap90的鉴定与基因定位[J]. 作物学报, 2022, 48(7): 1569-1582.
[12] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[13] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[14] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[15] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!