Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (6): 1013-1020.doi: 10.3724/SP.J.1006.2009.01013


Isolation,Characterization and Mapping of Genomic Microsatellite Markers for the First Time in Sea-Island Cotton(Gossypium barbadense)

ZHANG Pei-Pei,WANG Xia-Qing**,YU Yang,YU Yu,LIN Zhong-Xu*,ZHANG Xian-Long   

  1. Department of Plant Science & Technology,National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research(Wuhan),Huazhong Agricultural University,Wuhan 430070,China
  • Received:2008-09-16 Revised:2009-02-15 Online:2009-06-12 Published:2009-04-16
  • Contact: LIU Zhong-Xu,E-mail:linzhongxu@mail.hzau.edu.cn;Tel:027-87283955;Fax:027-87280016


Sea-island cotton (G. barbadense) is one of the most important cultivated cotton species in the world. In order to explore the genetic diversity of this species, microsatellite loci were identified from G. barbadense cv. Pima3-79 (the genetic standard line). Microsatellite markers were developed using two different approaches: (i) cloning of ISSR amplified fragments and (ii) amplification using degenerate primers. Two hundred and thirty-nine unique clones were generated from 1447 recombinants, and 214 unique sequences were obtained. Eighty-six primer pairs were developed from 70 sequences that had flanking regions sufficient for primer design. The 86 SSR primer pairs were used to analyze 56 sea-island cotton accessions and 4 upland cotton cultivars, 16 primers had no amplification and 43 primers did not detect polymorphism between all the cultivars. Nineteen primers showed polymorphism between the sea-island cotton accessions. On the basis of Jaccard’s genetic similarity coefficient, these primers could distinctly distinguish sea-island cotton and upland cotton, and sea-island cotton accessions were separated into four groups. Nine interspecific polymorphic markers were mapped on the cotton genetic map with four mapped at A sub-genome and five at D sub-genome. These microsatellite markers will be useful for assessing the genetic diversity patterns within sea-island cotton as well as aiding in construction of genetic linkage maps.

Key words: Sea-island cotton, Microsatellites, Genetic variation, Genetic mapping

[1] Bolek Y, El-Zik K M, Pepper A E, Bell A A, Magill C W, Thaxton P M, Reddy O U K. Mapping of Verticillium wilt resistance genes in cotton. Plant Sci, 2005, 168, 1581-1590

[2] Stephens S G. The genetics of ‘‘Corky’’. The New World alleles and their possible role as an interspecific isolating mechanism. J Genet, 1946, 47, 150-161

[3] Chen G(陈光), Du X-M(杜雄明), Lu D-B(卢东柏), Zhou Z-L(周忠丽), Liu G-Q(刘国强). Genetic diversity of Sea Island cotton using SSR markers. J Plant Genet Resour (植物遗传资源学报), 2005, 6(2), 135-139(in Chinese with English abstract)

[4] Li W(李武), Ni W(倪薇), Lin Z-X(林忠旭), Zhang X-L(张献龙). Genetic diversity analysis of sea-island cotton cultivars using SRAP markers. Acta Agron Sin (作物学报), 2008, 34(5): 893-898(in Chinese with English abstract)

[5] Mei M, Syed N H, Gao W, Thaxton P M, Smith C W, Stelly D M, Chen Z J. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet, 2004, 108: 280-291

[6] Rong J, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X, Garza J J, Marler B S, Park C, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X, Zhu L, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417

[7] Lacape J M, Nguyen T B, Thibivilliers S, Bojinov B, Courtois B, Cantrell R G, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome, 2003, 46:612-626

[8] Lacape J M, Nguyen T B, Courtois B, Belot J L, Giband M, Gourlot J P, Gawryziak G and Roques S. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci, 2005, 45: 123-140

[9] Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart J McD. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed, 2005, 124: 180-187

[10] He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica, 2007, 153: 181-197

[11] Yu J, Yu S, Lu C, Wang W, Fan S, Song M, Lin Z, Zhang X, Zhang J. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integ Plant Biol, 2007, 49: 716-724

[12] Zhang Y X, Lin Z X, Li W, Tu L L, Nie Y C, Zhang X L. Studies of new EST-SSRs derived from Gossypium barbadense. Chin Sci Bull, 2007, 52: 2522-2531

[13] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP and PCR analysis. Plant Mol Biol Rep, 1993, 11, 112-127

[14] Zhang Y X, Lin Z X, Xia Q Z, Zhang M J, Zhang X L. Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome, 2008, 51: 534-546

[15] Fisher P J, Gardner R C, Richardson T E. Single locus microsatellites isolated using 5′ anchored PCR. Nucl Acid Res, 1996, 24: 4369-4371

[16] Kumar S V, Tan S G, Quah S C, Yusoff K. Isolation and characterization of seven tetranucleotide microsatellite loci in mungbean, Vigna radiata. Mol Ecol Notes, 2002, 2: 293-295

[17] Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res, 1999, 9: 868-877

[18] Rozen S, Skaletsky H J. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S, eds. Bioinformatics Methods and Protocols: Methods in Molecular Biology, Totowa, New Jersey: Humana Press, 2000, pp 365-386

[19] Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1, User Guide. New York: Exeter Software, 2000

[20] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg I. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181

[21] Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175

[22] Reddy O U K, Pepper A E, Abudurakhmonov I, Saha S, Jenkins J N, Brooks T D, Bolek Y, El-Zik K M. New dinucleotide and trinucleotide microsatellite resources for cotton genome research. J Cot Sci, 2001, 5: 103-113

[23] Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet, 2004, 109: 167-175

[24] Qureshi S N, Saha S, Kantety R V, Jenkins J N. EST-SSR: A new class of genetic markers in cotton. J Cot Sci, 2004, 8: 112-123

[25] Han Z G, Wang C B, Song X L, Guo W Z, Gou J Y, Li C H, Chen X Y, Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet, 2006, 112: 430-439

[26] Taliercio E, Allen R D, Essenberg M, Klueva N, Nguyen H, Patil M A, Payton P, Millena A C M, Phillips A L, Pierce M L, Scheffler B, Turley R, Wang J, Zhang D S, Scheffler J. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome, 2006, 49: 306-319

[27] Hoffman S M, Yu J Z, Grum D S, Xiao J, Kohel R J, Pepper A E. Identification of 700 new microsatellite loci from cotton (G. hirsutum L.). J Cotton Sci, 2007, 11:208-241

[28] Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Gen Genomics, 2004, 272: 308-327

[29] Park Y H, Alabady M S, Ulloa M, Sickler B, Wilkins T A, Yu J, Stelly D M, Kohel R J, El-Shihy O M, Cantrell R G. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population. Mol Gen Genomics, 2005, 274: 428-441

[30] Wang C B, Guo W Z, Cai C P, Zhang T Z.Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chin Sci Bull, 2006, 51: 557-561

[31] Eujayl I, Sorrells M E, Baum M, Wolters P, Powell W. Assessment of genotype variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica, 2001, 119: 39-43
[1] ZENG Xin-Ying,GUO Jian-Bin,ZHAO Jiao-Jiao,CHEN Wei-Gang,QIU Xi-Ke,HUANG Li,LUO Huai-Yong,ZHOU Xiao-Jing,JIANG Hui-Fang,HUANG Jia-Quan. Identification of QTL related to seed size in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2019, 45(8): 1200-1207.
[2] Le-Chen LI,Guo-Zhong ZHU,Xiu-Juan SU,Wang-Zhen GUO. Genome-wide screening and evaluation of SNP core loci for fingerprinting construction of cotton accessions (G. barbadense) [J]. Acta Agronomica Sinica, 2019, 45(5): 647-655.
[3] Da-Wei JIAN, Yang ZHOU, Hong-Wei LIU, Li YANG, Chun-Yan MAI, Li-Qiang YU, Xin-Nian HAN, Hong-Jun ZHANG, Hong-Jie LI. Functional Markers Reveal Genetic Variations in Wheat Improved Cultivars and Landraces from Xinjiang [J]. Acta Agronomica Sinica, 2018, 44(05): 657-671.
[4] GUO Jian-Bin,HUANG Li,CHENG Liang-Qiang1,CHEN Wei-Gang,REN Xiao-Ping,CHEN Yu-Ning,ZHOU Xiao-Jing,SHEN Jin-Xiong,JIANGHui-Fang. An Integrated Genetic Linkage Map from Three F2 Populations of Cultivated Peanut (ArachishypogaeaL.) [J]. Acta Agron Sin, 2016, 42(02): 159-169.
[5] LI Zhen-Dong, LI Xin-Ping, HUANG Li, REN Xiao-Ping, CHENG Yu-Ning, ZHOU Xiao-Jing, LIAO Bo-Shou, JIANG Hui-Fang. Mapping of QTLs for Pod Size Related Traits in Cultivated Peanut (Arachis hypogaea L.) [J]. Acta Agron Sin, 2015, 41(09): 1313-1323.
[6] CHENG Liang-Qiang,TANG Mei,REN Xiao-Ping,HUANG Li,CHEN Wei-Gang,LI Zhen-Dong,ZHOU Xiao-Jing,CHEN Yu-Ning,LIAO Bo-Shou,JIANG Hui-Fang*. Construction of Genetic Map and QTL Analysis for Mainstem Height and Total Branch Number in Peanut (Arachis hypogaea L.) [J]. Acta Agron Sin, 2015, 41(06): 979-987.
[7] WANG Li-Xia,CHENG Xu-Zhen,WANG Su-Hua,ZHU Xu,LIU Zhen-Xing. Adaptability and Phenotypic Variation of Agronomic Traits in Mungbean Core Collection under Different Environments in China [J]. Acta Agron Sin, 2014, 40(04): 739-744.
[8] CHEN Feng,LI Xiang-Nan,CAO Ying-Ying,SUN Jian-Xi,ZHANG Fu-Yan,DONG Zhong-Dong,CUI Dang-Qun. Analysis of Association of puroindoline b-2 Alleles with Yield-Related Traits in Bread Wheat [J]. Acta Agron Sin, 2014, 40(01): 17-21.
[9] ZHANG Rui-Qi,WANG Xiu-E,CHEN Pei-Du. Inheritance and Mapping of Gene Controlling Four-Rowed Spike in Tetraploid Wheat (Triticum turgidum L.) [J]. Acta Agron Sin, 2013, 39(01): 29-33.
[10] ZHOU Meng-Jing, WEN Yong, LI Shuang-Cheng, LI Cheng-Bei, ZHANG Man-Hua, GAO Feng-Yan, WANG Ling-Xia, LI Ping. Phenotypic Characterization and Genetic Mapping of an Increased Stigma Mutant in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2011, 37(10): 1779-1784.
[11] ZHANG Han, WANG Jian-Cheng, WANG Dong-Jian, TAO Feng-Xia, HU Jin-Fang, SONG Guo-An, GUAN Yan-An, LI Ru-Yu. Assessment of Genetic Diversity in Chinese Sorghum Landraces Using SSR Markers as Compared with Foreign Accessions [J]. Acta Agron Sin, 2011, 37(02): 224-234.
[12] BAO Si-Yuan,TAN Ming-Pu,LIN Xing-Hua.
Genetic Mapping of a Bacterial Blight Resistance Gene Xa14 in Rice
[J]. Acta Agron Sin, 2010, 36(3): 422-427.
[13] XU Jian-Fei,HUANG San-Wen,JIN Li-Ping,DUAN Shao-Guang,QU Dong-Yu. Genetic Mapping of Rll Gene Conferring Resistance to Late Blight in Potato(Solanum tuberosum) [J]. Acta Agron Sin, 2009, 35(6): 992-997.
[14] LIU Xian-Jun,YUAN Mou-Zhi,GUAN Chun-Yun,CHENille She-Yuan,LIU Shu-Yan,et al.. Inheritance,Mapping and Qrigin of the Yellow-Seeded Traits in Brassica juncea [J]. Acta Agron Sin, 2009, 35(5): 839-847.
[15] LI Wu;NI Wei;LIN Zhong-Xu;ZHANG Xian-Long. Genetic Diversity Analysis of Sea-Island Cotton Cultivars Using SRAP Markers [J]. Acta Agron Sin, 2008, 34(05): 893-898.
Full text



No Suggested Reading articles found!