Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (06): 979-987.doi: 10.3724/SP.J.1006.2015.00979

• RESEARCH NOTES • Previous Articles    

Construction of Genetic Map and QTL Analysis for Mainstem Height and Total Branch Number in Peanut (Arachis hypogaea L.)

CHENG Liang-Qiang,TANG Mei,REN Xiao-Ping,HUANG Li,CHEN Wei-Gang,LI Zhen-Dong,ZHOU Xiao-Jing,CHEN Yu-Ning,LIAO Bo-Shou,JIANG Hui-Fang*   

  1. Oil Crops research institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
  • Received:2014-10-27 Revised:2015-03-19 Online:2015-06-12 Published:2015-04-03
  • Contact: 姜慧芳, E-mail: peanut@oilcrops.com, Tel: 027-86711550 E-mail:chengliangmei1984@126.com


Peanut is an allotetraploid crop with a large genome. The construction of genetic linkage map and QTL mapping of related traits has little progress for peanut. In the present study, a genetic map consisting of 20 linkage groups was constructed with 234 SSR markers based on 2653 published SSR markers by using the F2 population derived from the cross between Fuchuan Dahuasheng and ICG6375. The genetic map covers 1683.43 cM, and the length of each linkage group varies from 36.11 to 131.48 cM, the number of markers in each linkage group varies from 6 to 15, with an average distance of 7.19 cM. Combining with the data of main stem height and number of total branches of F3 population in the environments of Wuhan and Yangluo, we performed QTL mapping and genetic effects analysis of QTLs by software WinQTLCart 2.5 using CIM (Composite Interval Mapping) method. As a result, 17 QTLs related to main stem height and number of total branches on eight linkage groups were detected with contribution percentage of 0.10%–10.22%. Comparing the QTLs detected in the environments of Wuhan and Yangluo, qMHA061.1 and qMHA062.1 were in the same linkage region of markers TC1A2–AHGS0153 of linkage group LG06 with contribution percentage of 5.49%–8.95%, qMHA061.2 and qMHA062.2 were between the markers AHGS1375 and PM377 on linkage group LG06 with contribution ratio of 2.93%–5.83%, qMHA092.2 and qMHA091.1 were in the same linkage region of the markers GM2839–EM87 in linkage group LG09 with contribution percentage of 0.53%–9.43%. The QTLs repeatedly detected are important for molecular breeding of peanut.

Key words: Cultivated peanut, Genetic mapping, Mainstem height, Number of total branches, QTL

[1]廖伯寿. 我国花生科研与产业发展现状及对策. 中国农业信息, 2008, (5): 18–20

Liao B S. Development status and strategies of peanut research and industry development status. China Agric Inform, 2008, (5): 18–20 (in Chinese)

[2]王后苗, 黄家权, 雷永, 晏立英, 王圣玉, 姜慧芳, 任小平, 娄庆仁, 廖伯寿. 花生种子白藜芦醇含量与黄曲霉产毒抗性的关系. 作物学报, 2012, 38: 1875–1883

Wang H M, Huang J Q, Lei Y, Yan L Y, Wang S Y, Jiang H F, Ren X P, Lou Q R, Liao B S. Relationship of resveratrol content and resistance to aflatoxin accumulation caused by Aspergillus flavus in peanut seeds. Acta Agron Sin, 2012, 38: 1875−1883 (in Chinese with English abstract)

[3]Halward T, Stalker H. T, Kochert G. Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet, 1993, 87: 379–384

[4]Milla S, Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48: 1–11

[5]Moretzsohn M C, Leoi L K, Proite P, Guimaraes M, Leal-Bertioli S C M, Valls J F M, Grattapaglia D. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005, 111: 1060–1071

[6]Foncéka D, Hodo-Abalo T, Ronan R, Mbaye N S, Ousmane N. Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol, 2009, 9: 130

[7]Varshney R, Moretzsohn M C, Vadez V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet, 2009, 118: 729–739

[8]Ravi K, Vadez V, Zsobe S, Mir R R, Guo Y, Nigam S N, Growda M V C, Radhalrishncm T, Bertioli D J, Knapp S J, Varshney R V. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2011, 122: 1119–1132

[9]Khedikar Y, Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R. K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2010, 121: 971–984

[10]Shirasawa K, Koilkonda P, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12: 80

[11]Wang H, Pandey M K, Qiao L X, Qin H D, Culbreath A K , He G H, Varshney R K, Guo B Z. Genetic mapping and QTL analysis for disease resistance using F2 and F5 generation-based genetic maps derived from Tifrunner × GT-C20 in peanut (Arachis hypogaea L.). Plant Genome, 2013, 6: 1–28

[12]张新友. 栽培花生产量品质和抗病性的遗传分析与QTL定位研究. 浙江大学研究生院博士学位论文, 浙江杭州, 2010. pp 76–77

Zhang X Y. Inheritance of Main Traits Related to Yield Quality And Disease Resistance and Their QTLs Mapping in Peanut (Arachis hypogaea L.). PhD Dissertation of Graduate School of Zhejiang University, Hangzhou, China, 2010. pp 76–77 (in Chinese with English abstract)

[13]赖明芳, 曾彦, 漆燕, 夏友霖, 崔富华. 花生主要农艺性状的配合力分析. 中国油料作物学报, 2007, 29: 148–151

Lai M F, Zeng Y, Qi Y, Xia Y L, Cui F H. Analysis on the genetic characteristics of major economic traits in peanut. Chin J Crop Sci, 2007, 29: 148–151 (in Chinese with English abstract)

[14]殷冬梅, 尚明照, 崔党群. 花生主要农艺性状的遗传模型分析. 中国农学通报, 2006, 22(7): 261–265

Yin D M, Shang M Z, Cui D Q. Studies on genetic analysis of major agronomic characters in peanut. Chin Agric Sci Bull, 2006, 22(7): 261–265 (in Chinese with English abstract)

[15]姜慧芳, 段迺雄, 任小平. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 65–66

Jiang H F, Duan N X, Ren X P. Descriptors and Data Standard for Peanut (Arachis spp). Beijing: China Agriculture Publishers, 2006. pp 65–66

[16]Hong Y B, Chen X P, Liang X Q, Liang X Q, Liu H Y, Zhou G Y, Li S X, Wen S J, Horbrook C C, Guo B Z. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol, 2010, 10: 17

[17]Qin H D, Feng S P, Chen C, Guo Y F, Knapp S, Culbreath A, He G H, Wang M L, Zhang X Y, Horlbrook C C, Ozias-Akins P, Guo B Z. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet, 2012, 124: 653–664

[18]Hopkins M S A, Casa A M, Wang T, Mitchell S E. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci, 1999, 39: 1243–1247

[19]Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet, 2004, 108: 1064–1070

[20]Palmieri D A, Bechara M D, Curi R A, Gimenes M A, Lopes C R. Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol Notes, 2005, 5: 77–79

[21]Palmieri. D A, Hoshino A A, Bravo J P, Lopes, C R, Gimenes, M A. Isolation and characterization of microsatellite loci from the forage species Arachis pintoi (Genus, Arachis). Mol Ecol Notes, 2002, 2: 551–553

[22]He G H, Meng R H, Newman M, Cao G Q, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2003, 3: 3

[23]Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F M, Ferreira M F. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol, 2004, 4: 11

[24]Luo M, Dang P, Guo B Z, He G, Holbrook C C, Bausher M G, Lee K D. Generation of expressed sequence tag (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci, 2005, 45: 346–353

[25]Mace E S, Varshney R K, Mahalakshmi V. In silico development of simple sequence repeat markers within the aeschynomenoid, dalbergoid and genistoid clades of the Leguminosae family and their transferability to Arachis hypogaea, groundnut. Plant Sci, 2007, 174: 51–60

[26]Proite K, Leal-Bertioli S C, Bertioli D J. ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol, 2007, 7: 7

[27]Gimenes M A, Hosino A A, Barbosa A A G, Palmieri D A, Lopes C R. Characterization and transferability of microsatellite markers of cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2007, 7: 9

[28]Wang C T, Yang X D, Chen D Y, Yu L S, Liu G Z, Tang Y Y, Xu J Z. Isolation of simple sequence repeats from groundnut. Electr J Biotech, 2007, 10: 473–480

[29]Cuc L M, Mace E S, Grouch J H, Quang V D, Long T D, Varshney R K. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea L.). BMC Plant Biol, 2008, 8: 55

[30]Guo B Z , Chen X P, Hong Y B, Liang X Q, Dang P, Brenneman T, Holbrook C, Culbreath A. Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Intl J Plant Genom, 2009

[31]Nagy E, Chu Y, Guo Y F, Khananl S, Tang S S, Li Y, Dong W B, Timer P, Taylor C, Ozias-Akins P, Holbrook C C, Beilinson V, Nielsen N C, Stalker H T, Knapp S J. Recombination is suppressed in an alien introgression in peanut harbouring Rma, a dominant root-knot nematode resistance gene. Mol Breed, 2010, 26: 357–370

[32]Gautami B, Ravi K, M L, Narasu M L, Hoisington D A, Varshney R K. Novel set of groundnut SSR markers for germplasm analysis and inter-specific transferability. Int J Integr Biol, 2009, 7: 100–106

[33]Pandey M K, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya H D, Gowda M V C, Radhakrishan T, Bertioli D J, Knapp S J, Cook D R, Knapp S J, Cook D R, Varshney R K. Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breed, 2011, 131: 139–147

[34]洪彦彬, 梁炫强, 陈小平, 刘海燕, 周桂元, 李少雄, 温世杰. 花生栽培种SSR遗传图谱的构建. 作物学报, 2009, 35: 395–402

Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, Wen S J, Construction of genetic linkage map in peanut (Arachis hypogaea L.) cultivars. Acta Agron Sin, 2009, 35: 395–402 (in Chinese with English abstract)

[35]Shirasawa K, Bertioli D J, Varshney R K, Moretzsohn M C, Leal-Bertiol S C M i, Thudi M, Pandey M K, Rami J-F, Fonce´ka D, Gowda M V C, Qin H D, Guo B Z, Hong Y B, Liang X Q, Hirakawa H, Tabata S, Isobe S. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res, 2013, 20: 173–184

[36]Xu Y, Zhu L, Xiao J, Huang N, McMouch S R. Chromosomal regions associated with segregation distortion of molecular markers in F2 , backcross, doubled haploid and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet, 1997, 253: 535–545

[37]Zhao B, Deng Q M, Zhang Q J, Li J Q, Ye S P, Liang Y S, Peng Y, Li P. Analysis of segregation distortion of molecular markers in F2 population of rice. Acta Genet Sin, 2006, 33: 449–457

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[4] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[5] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[6] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[7] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[8] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[9] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[10] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[11] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[12] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[13] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[14] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[15] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
Full text



No Suggested Reading articles found!