Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (03): 408-415.doi: 10.3724/SP.J.1006.2012.00408

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping of the Resistant Gene to Rice Blast in the Dual Purpose Genic Male Sterile Rice, LongS

WANG Jian-Long1,2,WU Li-Qun2,LIU Jian-Feng1,DAI Liang-Ying1,LIU Xiong-Lun1,XIAO Ying-Hui1,XIE Hong-Jun3,LIU Qun-En1,LI Ting1,JIA Xian-Yong2,WANG Guo-Liang1,4,*,YUAN Long-Ping5,*   

  1. 1Hunan Agricultural University, Changsha 410128, China; 2Hunan Jinjian Seed Industry Co., Ltd, Changde 415000, China; 3Hunan Rice Research Institute, Changsha 410125, China; 4Ohio State University, Columbus 43210, USA; 5China National Hybrid Rice Research and Development Center, Changsha 410125, China
  • Received:2011-06-21 Revised:2011-12-15 Online:2012-03-12 Published:2012-01-04
  • Contact: 袁隆平, E-mail: lpyuan@hhrrc.ac.cn, Tel: 0731-82872998; 王国梁, E-mail: wang.620@osu.edu, Tel: 0731-84638423

Abstract: LongS is a dual purpose genic male sterile rice with broad-spectrumresistance to rice blast. The objective of the present study was to identifythe resistance spectrumto rice blast, to analyze thegenetic behavior ofresistance gene, and tomap the major resistancegenes in LongS. LongS had a resistance frequency of 100% inoculatedwith 41strainsofMagnaporthe oryza. Population geneticanalysis showed that theresistance genes in LongSexhibited dominant inheritance, the genetic model of R gene varied depend on the strainsof Magnaporthe oryzae. The main-effect resistant gene to rice blast was fine mapped, by using the bulk segregant analysis (BSA) and recessive class analysis (RCA) methods, with the F2 population derived from the resistant parent of LongS and the susceptible parent of Nipponbare. Asingle resistant gene to the race of 318-2 locatedon the interval flanked by the SSRmarkersof M1 and M2with a genetic distance of 1.3 cM onchromosome 9 were adjacent to the broad-spectrum blast resistance gene, Pi5. Both of the resistance spectrum and resistant frequency of LongS, however, were significantly different to those of resistant gene of Pi5 and Pii. In conclusion, the major-effect resistant gene identified in this study may be a new broad-spectrum blast resistance gene. The DNA markers linked to the new R gene identified in this study should be useful for marker-aided breeding of blast-resistant rice cultivars.

Key words: Rice, LongS, Rice blast, Resistant gene, Gene mapping

[1]Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan Q H, Read N D, Lee Y H, Carbone I, Brown D, Oh Y Y, Donofrio N, Jeong J S, Soanes D M, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L J, Nicol R, Purcell S, Nusbaum C, Galagan J E, Birren B W. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434: 980–986

[2]Liu J L, Wang X J, Mitchell T, Hu Y J, Liu X L, Dai L Y, Wang G L. Recent progress and understanding of the molecular mechanisms of the rice–Magnaporthe oryzae interaction. Mol Plant Pathol, 2010, 11: 419–427

[3]Ballini E, Morel J B, Droc G, Price A, Courtois B, Notteghem J L, Tharreau D. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact, 2008, 21: 859–868

[4]Lee S, Wamishe Y, Jia Y, Liu G, Jia M H. Identification of two major resistance genes against race IE-1k of Magnaporthe oryzae in the indica rice cultivar Zhe733. Mol Breed, 2009, 24: 127–134

[5]Xiao W M, Yang Q Y, Wang H, Guo T, Liu Y Z, Zhu X Y, Chen Z Q. Identification and fine mapping of a resistance gene to Magnaporthe oryzae in a space-induced rice mutant. Mol Breed, Online First, 31 July 2010, DOI: 10.1007/s11032-010-9481-6

[6]Huang H M, Huang L, Feng G P, Wang S H, Wang Y, Liu J L, Jiang N, Yan W T, Xu L C, Sun P Y, Li Z Q, Pan S J, Liu X L, Xiao Y H, Liu E M, Dai L Y, Wang G L. Molecular mapping of the new blast resistance genes Pi47 and Pi48 in the durably resistant local rice cultivar Xiangzi 3150. Phytopathology, 2011, 101:620–626

[7]Jie C, Shi Y F, Liu W Z, Chai R Y, Fu Y P, Zhuang J Y, Wu J L. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics, 2011, 38: 209–216

[8]Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Han B, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172: 1901–1914

[9]Suh J P, Roh J H, Cho Y C, Han S S, Kim Y G, Jena K K. The Pi40 gene for durable resistance to rice blast and molecular analysis of Pi40-advanced backcross breeding lines. Phytopathology, 2009, 99: 243–250

[10]Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics, 2009, 181: 1627–1638

[11]Chen X W, Shang J J, Chen D X, Lei C L, Zou Y, Zhai W X, Liu G Z, Xu J C, Ling Z Z, Cao G, Ma B T, Wang Y P, Zhao X F, Li S G, Zhu L H. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46: 794–804

[12]Wu J L, Fan Y Y, Li D B, Zheng K L, Leung H, Zhuang J Y. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet, 2005, 111: 50-56

[13]Fuentes J L, José Correa-Victoria F, Escobar F, Prado G, Aricapa G, Duque M C, Tohme J. Identification of microsatellite markers linked to the blast resistance gene Pi-1(t) in rice. Euphytica, 2008, 160: 295–304

[14]Zhou B, Qu S H, Liu G F, Maureen D, Hajime S, Lu G D, Maria B, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact, 2006, 19: 1216–1228

[15]Li W, Lei C L, Cheng Z J, Jia Y L, Huang D Y, Wang J L, Wang J K, Zhang X, Su N, Guo X P, Zhai H Q, Wan J M. Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Mol Breed, 2008, 22: 141–149

[16]Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun M H, Tharreau D. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet, 2003, 107: 1139–1147

[17]Deng Y W, Zhu X D, Shen Y, He Z H. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet, 2006, 113: 705–713

[18]Xu X, Hayashi N, Wang C T, Kato H, Fujimura T, Kawasaki S. Efficient authentic fine mapping of the rice blast resistance gene Pik-h in the Pik cluster, using new Pik-h-differentiating isolates. Mol Breed, 2008, 22: 289–299

[19]Liu J-F(刘建丰), Li C-G(李春庚). Breeding of rice PTGMS line LongS with good disease resistance and grain quality. Hybrid rice(杂交水稻), 2010, 25(3): 3–4 (in Chinese with English abstract)

[20]International rice genome sequencing project. The map-based sequence of the rice genome. Nature, 2005, 436: 793–800

[21]McCouch S R, Teytelman L, Xu Y, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199–207

[22]Jeremy D E, Jaroslav J, Megan T S, Ambika B G, Liu B, Hei L, David W G. Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice. Plant Methods, 2008, 4: 13

[23]Lincoln S, Daley M, Lander E. Constructing Genetic Maps with MAPMAKER/EXP 3.0, 3rd edn. Whitehead Institute Technical Report, Cambridge, 1992

[24]Yang Q-Z(杨勤忠), Lin F(林菲), Feng S-J(冯淑杰), Wang L(王玲), Pan Q-H(潘庆华). Recent progress on molecular mapping and cloning of blast resistance genes in rice (Oryza sativa L.). Sci Agric Sin (中国农业科学), 2009, 42(5): 1601–1615 (in Chinese with English abstract)

[25]Liu H(刘海), Xiao Y-H(肖应辉), Tang W-B(唐文邦), Deng H-B(邓化冰), Chen L-Y(陈立云). Development and application of a computer-aided selection system for thermo-sensitive genic male sterile rice multiplying site. Acta Agron Sin(作物学报), 2011, 37(5): 755–763 (in Chinese with English abstract)

[26]Yang S-H(杨仕华), Cheng B-Y(程本义), Shen W-F(沈伟峰), Xia J-H(夏俊辉). Progress of application and breeding on two-line hybrid rice in China. Hybrid Rice (杂交水稻), 2009, 24(1): 5–9 (in Chinese with English abstract)
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!