Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (03): 447-453.doi: 10.3724/SP.J.1006.2012.00447

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular Mapping and Identification of QTLs for Fiber Micronaire on Chromosome 7 from Gossypium klotzschianum

XU Peng, ZHU Jing, ZHANG Xiang-Gui, NI Wan-Chao, XU Ying-Jun,SHEN Xin-Lian*   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2011-07-21 Revised:2011-10-12 Online:2012-03-12 Published:2012-01-09
  • Contact: 沈新莲, E-mail: Shenxinlian@yahoo.com.cn, Tel: 025-84390291

Abstract: G. klotzschianum, carrying the elite alleles, is a diploid species of D genome originated from Galapagos Island, harboring the lethal genes to cause inconsistency of apical bud growth. In this research, we overcame the obstacle and established a BC1F2 population derived from (Simian2× G. klotzschianum) ×Simian2 (G. hirsutum). The SSR marker NAU1362 on chromosome 7 showed significant correlation with micronaire value by single marker analysis. The BC2F3 and BC2F4 populations were developed from the cross between BC1F2 individuals containing target segments of chromosome 7 from G. klotzschianum and recurrent parent Simian2. The software Cartographer (V2.5) and the composite interval mapping were further employed to identify quantitative trait loci (QTL) associated with fiber micronaire in two generations. The fiber micronaire QTL qFMIC-7-1 identified in BC1F2 population was confirmed in BC2F3 and BC2F4, which explained 9.0% and 8.8% of the phenotypic variance, respectively. The G. klotzschianum allele decreased the fiber micronaire value. Another micronaire QTL qFMIC-7-2 on chromosome 7 was also detected in BC2F3 and BC2F4 generations with phenotypic variance of 3.7% and 4.7%, respectively. Simian2 was genotyped as decreased micronaire value. This study provides valuable resources for effectively utilization of potential elite genes from G. klotzschianum.

Key words: Cotton, G. klotzschianum, Micronaire, QTL mapping

[1]Pan J-J (潘家驹). Cotton Breeding. Beijing: China Agricultural Press, 1998. p 204 (in Chinese)

[2]Miller P A, Williams J C, Robinson H F, Comstock R E. Estimate of genotypic and environmental variances and covariances in upland cotton and their implication in selection. Agron J, 1958, 50: 126-131

[3]Miller P A, Rawlings J O. Breakup of initial linkage blocks through intermating in a cotton breeding population. Crop Sci, 1967, 7: 199-204

[4]Meredith W R, Bridge R R. Break up of linkage blocks in cotton, Gossypium hirsutum L. Crop Sci, 1971, 11: 695-698

[5]May O L. Genetic variation for fiber quality. In: Basra A S ed. Cotton Fibers-developmental Biology, Quality Improvement, and Textile Processing. New York: Food Products Press, 1999. pp 183-229

[6]Fryxell P A. A revised taxonomic interpretation of Gossypium L. (Malvacea). Rheedea, 1992, 2: 108-165

[7]Phillips L L. Interspecific incompatibility in Gossypium: IV. Temperature-conditional lethality in hybrids of G. klotzschianum. Amer J Bot, 1977, 64: 914-915

[8]Qian S-Y(钱思颖), Huang J-Q(黄骏麒), Zhou B-L(周宝良), Peng Y-J(彭跃进), Xu Y-J(徐英俊), Gu L-M(顾立美), Shen X-L(沈新莲). Studies on hybridization of G. hirsutum × G. klotzschianum Anderss and its uses. Jiangsu J Agric Sci (江苏农业学报), 1996, 12(4): 18-22 (in Chinese with English abstract)

[9]Shen X L, Zhu J, Zhang X G, Zhang B L, Cao Z B, Yang Y W, Xu P, Ni W C. Introgression of Gossypium klotzschianum genome into cultivated cotton, G. hirsutum. Cotton Sci, 2008, 20: 256-263

[10]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122-127

[11]Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossipium. Genetics, 2007, 176: 527-541

[12]Xiao J, Wu K, Fang D D, Stelly D M, Yu J, Cantrell R G. New SSR markers for use in cotton (Gossypium spp.) improvement. J Cotton Sci, 2009, 13: 75-157

[13]Zhang J, W Y T, Guo W Z, Zhang T Z. Fast screening of SSR markers in cotton with PAGE/silver staining. Cotton Sci Sin, 2000, 12: 267-269

[14]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181

[15]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175

[16]Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer2.5. Statistical Genetics, Raleigh, NC: North Carolina State University, 2001-2005

[17]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468

[18]Wang H(王慧), Yu D-Y(喻德跃), Wu Q-J(吴巧娟), Gai J-Y(盖钧镒). Characterization of resistance genes to cotton worm with SSR markers in soybean. Soybean Sci (大豆科学), 2004, 23(2): 91-95 (in Chinese with English abstract)

[19]Xu J-C(徐吉臣), Zhou L-X(邹亮星). Identification of molecular markers associated with rice root traits by correlation coefficient analysis. Acta Genet Sin (遗传学报), 2002, 29(3): 245-249 (in Chinese with English abstract)

[20]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, MorishimaH, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13

[21]Beaseley J O. The production of polyploids in Gossypium. J Hered, 1940, 31: 39-48

[22]Qian S-Y(钱思颖), Huang J-Q(黄骏麒), Peng Y-J(彭跃进), Zhou B-L(周宝良), Ying M-C(应苗成), Shen D-Z(沈端庄), Liu G-L(刘桂玲), Hu Y-X(胡延馨), Xu Y-J(徐英俊), Gu L-M(顾立美), Ni W-C(倪万潮), Chen S(陈松). Studies on the hybrid of Gossypium hirsutum L. and G.anomalum Wawr. & Peyr. and application in breeding. Sci Agric Sin (中国农业科学), 1992, 25(6): 44-51 (in Chinese with English abstract)

[23]Qian S-Y(钱思颖), Zhou B-L(周宝良), Huang J-Q(黄骏麒), Peng Y-J(彭跃进), Gu L-M(顾立美), Xu Y-J(徐英俊), Shen X-L(沈新莲). Studies on the interspecific hybrid of G. hirsutum cultivar 86-1 G. armourianum and its use in breeding. Acta Agron Sin (作物学报), 1995, 21(5): 592-597 (in Chinese with English abstract)

[24]Stewart J M. Potential for crop improvement with exotic germplasm and genetic engineering. In: Constable G A, Forrester N W, eds. Challenging the future: Proceedings of the World Cotton Research Conference-1. Brisbane, Australia: CSIRO, 1995. pp 313-327

[25]Shen X-L(沈新莲), Zhang X-G(张香桂), Zhang B-L(张保龙), Yang Y-W(杨郁文), Yao S(姚姝), Ni W-C(倪万潮). Genetic analysis for introgression gene of yellow petal from G. amourianum to G. hirsutum and its effect on other traits. Cotton Sci (棉花学报), 2007, 19(1): 78-80 (in Chinese with English abstract)

[26]Brown M S, Menzel M Y. Polygenomic hybrids in Gossypium: I. Cytology of hexaploids, pentaploids and hexaploid combinations. Genetics, 1952, 37: 242-263

[27]Meyer V G. Interspecific cotton breeding. Econ Bot, 1974, 28: 56-60

[28]Brubaker C L, Brown A H D, Stewart J M, Kilby M J, Grace J P. Production of fertile hybrid germplasm with diploid Australian Gossypium species for cotton improvement. Euphytica, 1999, 108: 199-213

[29]Culp T W, Harrell D C. Breeding methods for improving yield and fiber quality of upland cotton (Gossypium hirsutum L.). Crop Sci, 1973, 13, 686-689

[30]Zhou B-L(周宝良), Shen X-L(沈新莲), Chen S(陈松), Zhang X-G(张香桂) Zhang Z-L(张震陵). Study on effect of three wild species for improving fiber quality in upland cotton (Gossypium hirsutum L). Cotton Sci (棉花学报), 2003, 15(1): 22-25 (in Chinese with English abstract)

[31]Lacape J M, Nguyen T B, Courtois B, Belot J L, Giband M, Gourlot J P, Gawryziak G, Roques S, Hau B. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generation. Crop Sci, 2005, 45: 123-140

[32]Zhang Z S, Xiao Y H, Luo M, Li X B Luo X Y Hou L, Li D M, Pei Y. Construction of a genetic linkage map QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91-99

[33]He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum ×Gossypium baebadense. Euphytica, 2007, 153, 181-197

[34]Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype × environment interaction affecting cotton fiber quality. Theor Appl Genet, 2003, 106: 384-396

[35]Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Yu J Z, Kohel R J, Zhang T Z. Molecular mapping of QTL for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed, 2005, 15: 169-181

[36]Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica, 2007, 155: 371-380

[37]Qin Y-S(秦永生), Ye W-X(叶文雪), Liu R-Z(刘任重), Zhang T-Z(张天真), Guo W-Z(郭旺珍). QTL mapping for fiber quality properties in upland cotton (Gossypium hirsutum L.). Sci Agric Sin (中国农业科学), 2009, 42(12): 4145-4154 (in Chinese with English abstract)

[38]Wang J(王娟), Guo W-Z(郭旺珍), Zhang T-Z(张天真). QTL mapping for fiber quality properties in cotton cultivar Yumian 1. Acta Agron Sin (作物学报), 2007, 33(12): 1915-1921 (in Chinese with English abstract)

[39]Zhang Z S, Hu M C Zhang J, Liu D J, Zheng J, Zhang K, Wang W, Wan Q. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed, 2009, 24: 49-61

[40]Hu W-J(胡文静), Zhang X-Y(张晓阳), Zhang T-Z(张天真), Guo W-Z(郭旺珍). Molecular tagging and source analysis of QTL for elite fiber quality in upland cotton. Acta Agron Sin (作物学报), 2008, 34(4): 578-586 (in Chinese with English abstract)

[41]Chen L(陈利), Zhang Z-S(张正圣), Hu M-C(胡美纯), Wang W(王威), Zhang J(张建), Liu D-J(刘大军), Zheng L(郑靓), Zheng F-M(郑风敏), Ma J(马靖). Genetic linkage map construction and QTL mapping for yield and fiber quality in upland cotton (Gossupium hirsutum L.). Acta Agron Sin (作物学报), 2008, 34(7): 1199-1205 (in Chinese with English abstract)
[1] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[2] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[7] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[8] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[9] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[10] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[11] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[12] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[13] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[14] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[15] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!