Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (09): 1710-1715.doi: 10.3724/SP.J.1006.2012.01710
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
SHAO Rui-Xin1,2,XIN Long-Fei1,YANG Qing-Hua1,SHANG-GUAN Zhou-Ping2,*
[1]Kaoua M E, Serraj R, Benichou M, Hsissou D. Comparative sensitivity of two Moroccan wheat varieties to water stress: the relationship between fatty acids and proline accumulation. Bot Stud, 2006, 47: 51-60[2]Baquedano F J, Castillo F J. Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees, 2006, 20: 689-700[3]Maxwell K, Johnson G N. Chlorophyll fluorescence: a practical guide. J Exp Bot, 2000, 51: 659-668[4]Panda D, Dash P K, Dhal N K, Rout N C. Chlorophyll fluorescence parameters and chlorophyll content in mangrove species grown in different salinity. Gen Appl Plant Physiol, 2006, 32: 175-180 [5]Calatayud A. Chlorophyll a fluorescence as indicator of atmospheric pollutant effects. Toxicol Environ Chem, 2007, 89: 627-639[6]Golding A J, Johnson G N. Down-regulation of linear and activation of cyclic electron transport during drought. Planta, 2003, 218: 107-114[7]Duan H G, Yuan S, Liu W J, Xi D H, Qing D H, Liang H G, Lin H H. Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. J Integr Plant Biol, 2006, 48: 920-927[8]Szepesi A, Csiszár J, Bajkán S, Gémes K, Horváth F, Erdei L, Deér A K, Simon M L, Tari I. Role of salicylic acid pretreatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biol Szeged, 2005, 49: 123-125[9]Dodd I C, Critchley C, Woodall G S, Stewart G R. Photoinhibition in differently colored juvenile leaves of Syzygium species. J Exp Bot, 1998, 49: 1437-1445[10]Dulai S, Molnár I, Prónay J, Csernák Á, Tarnai R, Láng M M. Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats. Acta Biol Szeged, 2006, 50: 11-17[11]Baroli I, Melis A. Photoinhibitory damage is modulated by the rate of photosynthesis and by the photosystem II light-harvesting chlorophyll antenna size. Planta, 1998, 205: 288-296[12]Jasid S, Simontacchi M, Bartoli C G, Puntarulo S. Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol, 2006, 142: 1246-1255[13]Bright J, Desikan R, Hancock J T, Weir I S, Neill S J. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J, 2006, 45: 113-122 [14]Oh J I, Kaplan S. Generalized approach to the regulation and integration of gene expression. Mol Microbiol, 2001, 39: 1116-1123[15]Pfannschmidt T. Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci, 2003, 8: 33-41[16]Wendehenne D, Durner J, Klessig D F. Nitric oxide: a new player in plant signaling and defense responses. Curr Opin Plant Biol, 2004, 7: 449-455[17]Grün S, Lindermayr C, Sell S, Durner J. Nitric oxide and gene regulation in plants. J Exp Bot, 2006, 57: 507-516[18]Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta, 2000, 210: 215-221[19]Zhang Y Y, Wang L L, Liu Y L, Zhang Q, Wei Q P, Zhang W H. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 2006, 224: 545-555[20]Wang Y S, Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol, 2005, 46: 1915-1923[21]Beligni M V, Lamattina L. Nitric oxide in plants: the history is just beginning. Plant Cell Environ, 2001, 24: 267-278[22]Shao R-X(邵瑞鑫), Shang-Guan Z-P(上官周平). Effects of exogenous nitric oxide donor sodium nitroprusside on photosynthetic pigment content and light use capability of PSII in wheat under water stress. Acta Agron Sin (作物学报), 2008, 34: 818-822 (in Chinese with English abstract)[23]Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 1995, 61: 32-42[24]Strasser R J, Sivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P, eds. Probing photosynthesis: mechanisms, regulation, and adaptation. London: Taylor and Francis Press, 2000. pp 445-483 [25]Strasser R J, Srivastava A, Tsimilli-Michael M. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou, Govindjee G, eds. Advances in Photosynthesis and Respiration. Dordrecht, the Netherlands: KAP Press, 2004. pp 1-42[26]Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 2003, 41: 321-330[27]Wilson K E, Ivanov A G, Öquist G, Grodzinski B, Sarhan F, Huner N P A. Energy balance, organellar redox status, and acclimation to environmental stress. Can J Bot, 2006, 84: 1355-1370[28]Delledonne M, Xia Y, Dixon R A, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585-588[29]Scholander P F, Bradstreet E D, Hemmingsen E A, Hammel H T. Sap pressure in vascular plants negative hydrostatic pressure can be measured in plants. Science, 1965, 148: 339-346[30]Demmig-Adams B, Adams III W W, Barker D H, Logan B A. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253-264[31]Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I. Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot, 2008, 59: 165-176[32]Beligni M V, Lamattina L. Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide, 1999, 3: 199-208[33]Shao R-X(邵瑞鑫), Shang-Guan Z-P(上官周平). Effects of exogenous nitric oxide at different concentrations on the growth and physiology of winter wheat seedlings. Acta Ecol Sin (生态学报), 2008, 28: 302-309 (in Chinese with English abstract)[34]Torres M A, Jones J D G, Dangl J L. Reactive oxygen species signaling in response to pathogens. Plant Physiol, 2006, 141: 373-378[35]Tas S, Tas B. Some physiological responses of drought stress in wheat genotypes with different ploidity in Turkiye. World J Ggric Sci, 2007, 3: 178-183[36]Hetherington A M. Guard cell signaling. Cell, 2001, 107: 711-714[37]Schroeder J I, Allen G J, Hugouvieux V, Kwak J M., Waner D. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 627-658[38]Lesser M P. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol, 2006, 68: 253-278[39]Mallick N, Mohn F H, Soeder C J, Grobbelaar J U. Ameliorative role of nitric oxide on H2O2 toxicity to a chlorophycean alga Scenedesmus obliquus. J Gen Appl Microbiol, 2002, 48: 1-7[40]Akio U, Andre T J, Takashi H, Temhiro T, Tetsuko T. Effects of hydrogen peroxide and nitric oxide on both salt and Heat stress tolerance in rice. Plant Sci, 2002, 163: 515-523[41]Lamattina L, Mata C G, Graziano M, Pagnussat G. Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol, 2003, 54: 109-136[42]Lazalt A M, Beligni M V, Lamattina L. Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. Eur J Plant Pathol, 1997, 103: 643-651[43]Kitao M, Lei T T, Koike T, Tobita H, Maruyama Y. Higher electron transport rate observed at low intercellular CO2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiol Plant, 2003, 118: 406-413[44]Yang J-D(杨甲定), Zhao H-L(赵哈林), Zhang T-H(张铜会), Yun J-F(云建飞). Effects of exogenous nitric oxide on photochemical activity of photosystem II in potato leaf tissue under non-stress condition. Acta Bot Sin (植物学报), 2004, 46:1009-1014 (in Chinese with English abstract) |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[3] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[4] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[5] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[6] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[7] | FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715. |
[8] | LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725. |
[9] | XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447. |
[10] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[11] | WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462. |
[12] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[13] | MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164. |
[14] | MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75. |
[15] | WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47. |
|