Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (10): 1833-1838.doi: 10.3724/SP.J.1006.2012.01833

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Characterization of GmPGIP3 Transgenic Wheat Yangmai 18 with Enhanced Resistance to Common Root Rot

DANG Liang1,2,**,WANG Ai-Yun1,3,**,XU Hui-Jun1,ZHU Xiu-Liang1,DU Li-Pu1,SHAO Yan-Jun2,ZHANG Zeng-Yan1,*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Biology Science, Agricultural University of Hebei, Baoding 071001, China; 3 College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
  • Received:2012-04-19 Revised:2012-06-10 Online:2012-10-12 Published:2012-07-27
  • Contact: 张增艳, E-mail: zhangzy@mail.caas.net.cn

Abstract:

GmPGIP3 is a polygalacturonase-inhibiting protein from soybean, which could reduce the infection of fungal pathogen throughr inhibiting the endo-polygalacturonase activity of pathogen fungi. Using genetic recombination technique, we constructed the transformation vector of GmPGIP3 gene expressing highly in monocot plants, pA25-GmPGIP3, in which GmPGIP3 gene was driven by maize ubiquitin promoter. Embryo callus of Yangmai 18 was bombarded by the particle containing pA25-GmPGIP3 vector DNA. The GmPGIP3 transgenic wheat plants from T0 to T2 generations were detected by PCR, Southern blot, RT-PCR, and Q-RT-PCR analyses. The alien GmPGIP3 proved to be introduced into seven transgenic wheat lines with heritability and expression events. We also evaluated the disease resistance in these GmPGIP3 transgenic plants through inoculating the common root rot pathogen, Bipolaris sorokiniana. Compared with untransformated Yangmai 18, five GmPGIP3 transgenic lines showed significantly-enhanced resistance to Bipolaris sorokiniana.

Key words: Polygalacturonase-inhibiting protein (PGIP), GmPGIP3, Transgenic wheat, Molecular detection, Common root rot, Resistance

[1]Cervone F, Hahn M G, Lorenzo G, Darvill A, Albersheim P. A plant protein converts a fungal pathogenesis factor onto an elicitor of plant defense responses. Plant Physiol, 1989, 90: 542–548



[2]Albersheim P, Anderson A J. Protein from plant cell wall inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA, 1971, 68: 1815–1819



[3]D’Ovidio R, Mattei B, Roberti S. Polygalacturonases, polygalacturonase-inhibiting protein and pectic oligomers in plant-pathogen interactions. Biochim Biophys Acta, 2004, 1696: 237–244



[4]Lin X-R(林晓蓉), Bai X-F(白雪芳), Du Y-G(杜昱光), Zhao Y-P(赵银萍). PGIP and wheat phytoalexin are purified by column chromatography and TLC. J Xi’an United Univ (西安联合大学学报), 1999, 2: 35–38 (in Chinese with English abstract)



[5]D’Ovidio R, Roberti S, Di Giovanni M, Capodicasa C, Melaragni M, Sella L, Tosi P, Favaron F. The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta, 2006, 224: 633–645



[6]Jia Y-X(贾延祥), Wu G-B(吴桂本), Liu C-D(刘传德). The present research situation and control countermeasure of root rots in wheat. Sci Agric Sin (中国农业科学), 1995, 28(3): 41–48 (in Chinese with English abstract)



[7]?a?niewska J, Macioszek V K, Lawrence C B, Kononowicz A K. Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta Physiol Plant 2010, 32: 1–10



[8]Xu H-J(徐惠君), Pang J-L(庞俊兰), Ye X-G(叶兴国), Du L-P(杜丽璞), Li L-C(李连城), Xin Z-Y(辛志勇), Ma Y-Z(马有志), Chen J-P(陈剑平), Chen J(陈炯), Cheng S-H(程顺和), Wu H-Y(吴宏亚). Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment. Acta Agron Sin (作物学报), 2001, 27(6): 684−689 (in Chinese with English abstract)



[9]Sharp P J, Kries M, Shewry P R, Gale M D. Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet, 1988, 75: 286–290



[10]Dong N, Liu X, Lu Y, Du L, Xu H, Liu H, Xin Z, Zhang Z. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Func Integr Genomics, 2010, 10: 215–226



[11]Willamson B, Johnston D J, Ramanathan V, McNicol R J. A polygalacturonase inhibitor from immature raspberry fruit: a possible new approach to grey mould control. Acta Hort, 1993, 352: 601–606



[12]Agüero C B, Uratsu S L, Greve C, Powell A L T, Labavitch J M, Meredith C P, Dandekar A M. Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol, 2005, 6: 43–51



[13]Janni M, Sella L, Favaron F, Blechl A E, De Lorenzo G, D’Ovidio R. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Mol Plant-Microbe Interact, 2008, 21: 171–177



[14]Farina A, Rocchi V, Janni M, Benedettelli S, De Lorenzo G, D’Ovidio R. The bean polygalacturonase-inhibiting protein 2 (PvPGIP2) is highly conserved in common bean (Phaseolus vulgaris L.) germplasm and related species. Theor Appl Genet, 2009, 118: 1371–1379



[15]Desiderio A, Aracri B, Leckie F, Mattei B, Salvi G, Tigelaar H, Van Roekel J S C, Baulcombe D C, Melchers L S, De Lorenzo G, Cervone F. Polygalacturonase-inhibiting proteins (PGIPs) with different specificities are expressed in Phaseolus vulgaris. Mol Plant-Microbe Interact, 1997, 10: 852–860



[16]Turner J G, Hoffman R M. Effect of the PGIP from pea on the hydrolysis pea cell walls by the edno-PG from Ascochyta pisi. Plant Pathol, 1985, 34: 54–60

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[7] YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634.
[8] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[9] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[10] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[11] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[12] MA Yan-Bin, WANG Xia, LI Huan-Li, WANG Pin, ZHANG Jian-Cheng, WEN Jin, WANG Xin-Sheng, SONG Mei-Fang, WU Xia, YANG Jian-Ping. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton [J]. Acta Agronomica Sinica, 2021, 47(6): 1197-1202.
[13] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[14] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[15] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!