Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (10): 1839-1846.doi: 10.3724/SP.J.1006.2012.01839

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression Analysis of Heat Shock Protein Gene ZmHSP90-1 in Maize

LIU Ling-Ling1,2,LIU Si-Si2,4,WENG Jian-Feng2,WANG Chang-Tao3,LI Xin-Hai2,ZHANG Shi-Huang2,SHI Qing-Hua4,WANG Li-Juan1,*,HAO Zhuan-Fang2,*   

  1. 王丽娟, E-mail: lj-wang@163.com; 郝转芳, E-mail: haozhuanfang@yahoo.com.cn
  • Received:2012-03-12 Revised:2012-04-20 Online:2012-10-12 Published:2012-07-03

Abstract:

The heat shock protein 90 (HSP90) is a widespread family of molecular chaperones found in prokaryotes and all eukaryotes, with high conservation among plant species. In this study, a HSP90 gene was isolated from maize, named ZmHSP90-1. The full cDNA sequence of ZmHSP90-1 is 2 371 bp, containing a 2 094 bp open reading frame (ORF) and encoding 697 amino acids with a predicted molecular mass of 79.98 kD. The ZmHSP90-1 protein contains a predicted ATPase site and a HSP90 conservative structure domain, which is highly conserved in plants and especially similar to AtHSP90.1. Instantaneous expression analysis showed that ZmHSP90-1 proteins was localized in cytoplasm. The expression of ZmHSP90-1 in maize analyzed by quantitative real-time PCR was induced by hot, high-salt, ABA, cold and drought treatments. These results suggested that ZmHSP90-1 might be a stress related gene of maize.

Key words: Maize (Zea mays L.), Heat shock protein, Abiotic stresses, ZmHSP90-1

[1]Kimura Y, Matsumoto S, Yahara I. Temperature-sensitive mutants of HSP82 of the budding yeast Saccharomyces cerevisiae. Mol Gen Genet, 1994, 242: 517-527



[2]Young J C, Moarefi I, Hartl F U. HSP90: a specialized but essential protein-folding tool. J Cell Biol, 2001, 154: 267-273



[3]Caplan A J, Jackson S, Smith D. HSP90 reaches new heights. EMBO Rep, 2003, 4: 126-130



[4]Stebbins C E, Russo A A, Schneider C, Rosen N, Hartl F U, Pavletich N P. Crystal structure of an HSP90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell, 1997, 89: 239-250



[5]Prodromou C, Panaretou B, Chohan S, Siligardi G, O B R, Ladbury J E, Roe S M, Piper P W, Pearl L H. The ATPase cycle of HSP90 drives a molecular'clamp'via transient dimerization of the N-terminal domains. EMBO J, 2000, 19: 4383-4392



[6]Song H-M(宋红苗), Chen X-Y(陈显扬), Li Y-X(李银心). Structure and function of heat shock protein 90 in plants. Plant Physiol Commun (植物生理学通讯), 2007, 43(6): 1002-1008 (in Chinese with English abstract)



[7]Rutherford S L, Lindquist S. HSP90 as a capacitor for morphological evolution. Nature, 1998, 396: 336-342



[8]Queitsch C, Sangster T A, Lindquist S. HSP90 as a capacitor of phenotypic variation. Nature, 2002, 417: 618-624



[9]Taipale M, Jarosz D F, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol, 2010, 11: 515-528



[10]Wang G F, Wei X, Fan R, Zhou H, Wang X, Yu C, Dong L, Dong Z, Wang X, Kang Z. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (HSP90): functional involvement of cytosolic HSP90s in the control of wheat seedling growth and disease resistance. New Phytologist, 2011, 191: 418-431



[11]Scofield S R, Huang L, Brandt A S, Gill B S. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol, 2005, 138: 2165-2173



[12]Hein I, Barciszewska-pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby I E, Sundar S, Jarmolowski A, Shirasu K, Lacomme C. Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol, 2005, 138: 2155-2164



[13]Song H, Fan P, Li Y. Overexpression of organellar and cytosolic AtHSP90 in Arabidopsis thaliana impairs plant tolerance to oxidative stress. Plant Mol Biol Rep, 2009, 27: 342-349



[14]Krishna P, Sacco M, Cherutti J F, Hill S. Cold-induced accumulation of HSP90 transcripts in Brassica napus. Plant Physiol, 1995, 107: 915-923



[15]Pareek A, Singla S L, Grover A. Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Mol Biol, 1995, 29: 293-301



[16]Milioni D, Hatzopoulos P. Genomic organization of HSP90 gene family in Arabidopsis. Plant Mol Biol, 1997, 35: 955-961



[17]Krishna P, Gloor G. The HSP90 family of proteins in Arabidopsis thaliana. Cell Stress & Chaperones, 2001, 6: 238-246



[18]Song H, Zhao R, Fan P, Wang X, Chen X, Li Y. Overexpression of AtHSP90.2, AtHSP90.5 and AtHSP90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses. Planta, 2009, 229: 955-964



[19]Song H, Fan P, Shi W, Zhao R, Li Y. Expression of five AtHSP90 genes in Saccharomyces cerevisiae reveals functional differences of AtHSP90s under abiotic stresses. J Plant Physiol, 2010, 167: 1172-1178



[20]Liu D, Zhang X, Cheng Y, Takano T, Liu S. rHSP90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiol Biochem, 2006, 44: 380-386



[21]Reddy P S, Thirulogachandar V, Vaishnavi C S, Aakrati A, Sopory S K, Reddy M K. Molecular characterization and expression of a gene encoding cytosolic HSP90 from Pennisetum glaucum and its role in abiotic stress adaptation. Gene, 2011, 474: 29-38



[22]Xu X, Song H, Zhou Z, Shi N, Ying Q, Wang H. Functional characterization of AtHSP90. 3 in Saccharomyces cerevisiae and Arabidopsis thaliana under heat stress. Biotechnol Lett, 2010, 32: 979-987



[23]Wu B(武斌), Li X-H(李新海), Xiao M-J(肖木辑), Xie C-X(谢传晓), Hao Z-F(郝转芳), Li M-S(李明顺), Zhang S-H(张世煌). Genetic variation in fifty-three maize inbred lines in relation to drought tolerance at seedling stage. Sci Agric Sin (中国农业科学), 2007, 40(4): 665-676 (in Chinese with English abstract)



[24]Hao Z F, Li X H, Su Z J, Xie C X, Li M S, Liang X L, Weng J F, Zhang D G, Li L, Zhang S H. A proposed selection criterion for drought resistance across multiple environments in maize. Breed Sci, 2011, 61: 101-108



[25]Forestan C, Meda S, Varotto S. ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol, 2010, 152: 1373-1390



[26]Pearl L, Prodromou C, Workman P. The HSP90 molecular chaperone: an open and shut case for treatment. Biochem J, 2008, 410: 439-453



[27]Chen S, Sullivan W P, Toft D O, Smith D F. Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with HSP90 mutants. Cell Stress & Chaperones, 1998, 3: 118-129



[28]Prodromou C, Roe S M, O B R, Ladbury J E, Piper P W, Pearl L H. Identification and structural characterization of the ATP/ADP-binding site in the HSP90 molecular chaperone. Cell, 1997, 90: 65-75



[29]Haralampidis K, Milioni D, Rigas S, Hatzopoulos P. Combinatorial interaction of Cis elements specifies the expression of the Arabidopsis AtHSP90-1 gene. Plant Physiol, 2002, 129: 1138-1149



[30]Sangster T A, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol, 2005, 8: 86-92



[31]Sun X-L(孙秀玲), Sun T-H(孙同虎), Bo P-F(薄鹏飞), Zhang W-J(张维静), Du X-H(杜希华). Heat shock protein 90 in development and disease resistance of plants. Chin Bull Life Sci (生命科学), 2008, 20(1): 142-146 (in Chinese with English abstract)



[32]Cao D, Froehlich J E, Zhang H, Cheng C L. The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90. Plant J, 2003, 33: 107-118



[33]Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N, Sakai T, Kanaya H, Okada K. SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J, 2002, 21: 898-908



[34]Yabe N, Takahashi T, Komeda Y. Analysis of tissue-specific expression of Arabidopsis thaliana HSP90-family gene HSP81. Plant Cell Physiol, 1994, 35: 1207-1219



[35]Krishna P, Sacco M, Cherutti J F, Hill S. Cold-induced accumulation of HSP90 transcripts in Brassica napus. Plant Physiol, 1995, 107: 915-923



[36]Nover L. Expression of heat shock genes in homologous and heterologous systems. Enzyme Microbial Technol, 1987, 9: 130-144



[37]Nover L, Scharf K D, Gagliardi D, Vergne P, Czarnecka-verner E, Gurley W B. The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress & Chaperones, 1996, 1: 215-223



[38]Hawle P, Horst D, Bebelman J P, Yang X X, Siderius M, der Van V. Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p). Eukaryotic Cell, 2007, 6: 521-532



[39]Truman A W, Millson S H, Nuttall J M, King V, Mollapour M, Prodromou C, Pearl L H, Piper P W. Expressed in the yeast Saccharomyces cerevisiae, human ERK5 is a client of the HSP90 chaperone that complements loss of the Slt2p (Mpk1p) cell integrity stress-activated protein kinase. Eukaryotic Cell, 2006, 5: 1914-1924



[40]Millson S H, Truman A W, King V, Prodromou C, Pearl L H, Piper P W. A two-hybrid screen of the yeast proteome for HSP90 interactors uncovers a novel HSP90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryotic Cell, 2005, 4: 849-860

[1] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[2] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[3] SUN Ting-Ting,WANG Wen-Ju,LOU Wen-Yue,LIU Feng,ZHANG Xu,WANG Ling,CHEN Yu-Feng,QUE You-Xiong,XU Li-Ping,LI Da-Mei,SU Ya-Chun. Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1 [J]. Acta Agronomica Sinica, 2019, 45(7): 1002-1016.
[4] SU Ya-Chun,WANG Zhu-Qing,LI Zhu,LIU Feng,XU Li-Ping*,QUE You-Xiong,DAI Ming-Jian,Chen Yun-Hao. Molecular Cloning and Functional Identification of Peroxidase Gene ScPOD02 in Sugarcane [J]. Acta Agron Sin, 2017, 43(04): 510-521.
[5] YAO Xiao-Hua,WU Kun-Lun*. Isolation of blt4.9 Gene Encoding LTP Protein in Hulless Barley and Its Re-sponse to Abiotic Stresses [J]. Acta Agron Sin, 2016, 42(03): 399-406.
[6] LI Cong-Feng,ZHAO Ming,LIU Peng,ZHANG Ji-Wang,YANG Jin-Sheng,DONG Shu-Ting. Characteristics of Grain Filling and Nitrogen Translocation of Maize Parent Lines Released in Different Eras in China [J]. Acta Agron Sin, 2014, 40(11): 1990-1998.
[7] LIU Cong,XIAO Dan-Wang,HU Xue-Fang,WU Ke-Bin,GUAN Chun-Yun,XIONG Xing-Hua. Cloning and Expression Analysis of Two Homologous Genes Coding sn-Glycerol-3-Phosphate Acyltransferase 6 in Brassica napus [J]. Acta Agron Sin, 2014, 40(07): 1304-1310.
[8] HEN Na,PAN Li-Juan,CHI Xiao-Yuan,CHEN Ming-Na,WANG Tong,WANG Mian,YANG Zhen,HU Dong-Qing,WANG Dao-Yuan,YU Shan-Lin. Cloning and Expression Analysis of Fructose-1,6-Bisphosphate Aldolase Gene AhFBA1 in Peanut (Arachis hypogaea L.) [J]. Acta Agron Sin, 2014, 40(05): 934-941.
[9] MA Hai-Zhen,ZHU Wei-Wei,WANG Qi-Bai,WANG Guo-Liang,LI Xin-Zhen,QI Bao-Xiu. Regeneration Capacity and Some Affecting Factors of Different Parts of Young Seedlings of Maize (Zea mays L.) [J]. Acta Agron Sin, 2014, 40(02): 313-319.
[10] MING Bo,ZHU Jin-Cheng,TAO Hong-Bin,XU Li-Na,GUO Bu-Qing,WANG Pu. Effects of Meteorological Factors at Different Growth Stages on Yield Traits of Maize (Zea mays L.) in Heilonggang Basin [J]. Acta Agron Sin, 2013, 39(05): 919-927.
[11] ZHANG Wei-Qiang,KU Li-Xia,ZHANG Jun,HAN Zan-Ping,CHEN Yan-Hui. QTL Analysis of Kernel Ratio, Kernel Depth and 100-Kernel Weight in Maize (Zea mays L.) [J]. Acta Agron Sin, 2013, 39(03): 455-463.
[12] CUI Li-Na,ZHANG Hai-Yan,MENG Jia-Jia,SHI De-Yang,ZHANG Hong,DONG Shu-Ting. Starch Granule Size Distribution in Grains of Maize with Different Endosperm Types [J]. Acta Agron Sin, 2012, 38(09): 1723-1727.
[13] LI Zong-Xin,CHEN Yuan-Quan,WANG Qing-Cheng,LIU Kai-Chang,GAO Wang-Sheng,SUI Peng. Influence of Planting Density on Root Spatio-Temporal Distribution of Different Types of Maize under High-Yielding Cultivation Conditions [J]. Acta Agron Sin, 2012, 38(07): 1286-1294.
[14] HUI Guo-Qiang, DU He-Wei, YANG Xiao-Gong, LIU Guang-Hui, WANG Zhen-Tong, ZHANG Yi-Rong, ZHENG Yan-Ping,YAN Jian-Bing, CHANG Ming-Tang, LI Jian-Sheng. Doubling Efficiency of Maize Haploids Treated by Different Herbicides [J]. Acta Agron Sin, 2012, 38(03): 416-422.
[15] WANG Yong-Jun, SUN Ji-Zhuan, YANG Jin-Qing, WANG Kong-Jun, DONG Shu-Ting, YUAN Cui-Beng, WANG Li-Chun. Effects of Controlled-Release Urea on Yield and Photosynthesis Characteristics of Maize (Zea mays L.) under Different Soil Fertility Conditions [J]. Acta Agron Sin, 2011, 37(12): 2233-2240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!