Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (03): 399-406.doi: 10.3724/SP.J.1006.2016.00399


Isolation of blt4.9 Gene Encoding LTP Protein in Hulless Barley and Its Re-sponse to Abiotic Stresses

YAO Xiao-Hua,WU Kun-Lun*   

  1. Qinghai Academy of Agriculture and Forestry Sciences / Qinghai Provincial Key Laboratory of Hulless Barley Genetics and Breeding / State Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Xining 810016, China
  • Received:2015-05-29 Revised:2015-11-20 Online:2016-03-12 Published:2015-12-18
  • Contact: 吴昆仑, E-mail: wklqaaf@163.com, Tel: 13997276769 E-mail:yaoxiaohua009@126.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31160284) and the Special Program of Modern Agro-industry Technology System (CARS-05).


Higher plant lipid transfer protein (LTP) is a class of small molecular weight alkaline single protein that can transfer phospholipids between biomembrane and form the biomembrane in cells. The objective of this study was to understand the function of LTP gene in hulless barley (Hordeum vulgare L. var. nudum Hook. f.). The cDNA sequence of the LTP gene, blt4.9 (GenBank accession number KU170187), was cloned from hulless barley variety Kunlun 12. The full length of blt4.9 cDNA is 720 bp including 348 bp of open reading frame and encodes 115 amino acids. The encoding product is a stable protein with a molecular weight of 11.2 kD, theoretical pI of 9.04, and instability coefficient of 28.41. This protein is rich in Gly, Ala, Leu, and Val amino acids excluding Trp, Glu, and Phe and similar to proteins encoded by other LTP genes. Sequence alignment indicated high simila­rity (98.3%) of protein encoded by blt4.9 from hulless barley and barley (Hordeum vulgare L.). The Real-time PCR assay showed that blt4.9 was up-regulated by 20–30% PEG-6000, 4ºC and 50 mmol L-1 ABA and the expression level was higher in the most tolerant variety Handizi than in the most susceptible variety Dama, indicating a possible relationship between stress tolerance and blt4.9 in hulless barley. These results provide basic information in the utilization of LTP genes to improve hulless barley tolerance to abiotic stresses.

Key words: Hulless barley, blt4.9, Isolation of gene, Abiotic stresses, Gene expression level

[1] 郭本兆. 青海经济植物志. 西宁: 青海人民出版社, 1987
Guo B Z. Economic Plant Flora of Qinghai. Xining: Qinghai People’s Publishing House, 1987 (in Chinese)
[2] 臧靖巍, 阚建全, 陈宗道, 赵国华. 青稞的成分研究及其应用现状. 中国食品添加剂, 2004, (4): 43–46
Zang J W, Kan J Q, Chen Z D, Zhao G H. Applications of barley study on its components. China Food Additives, 2004, (4): 43–46 (in Chinese with English abstract)
[3] Kader J C. Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 627–654
[4] Yubero-Serrano E M, Moyano E, Medina - Escobar N, Munoz- Blanco J, Caballero J L. Identification of a strawberry gene en-coding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. J Exp Bot, 2003, 54: 1865–1877
[5] Hsu C Y, Creeeh R G, Johnie J N, Ma D P. Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plants. Plant Sci, 1999, 143: 63–70
[6] Tobias B D, Dansen Jan W, Fred S W, Ronald J W, Arie H, Theodorus W G, Karel W W. High affinity binding of very long chain fatty acyl CoA esters to the peroxisomal nonspecific lipid transfer protein (sterol carrier protein). Biochem J, 1999, 339: 193–199
[7] Wu G, Robertson A J, Liu X, Zheng P, Wilen R W, Nesbitt N T. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis). Plant Physiol, 2004, 161: 449–458
[8] Jung S H, Lee J Y, Lee D H. Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol Biol, 2003, 52: 553–567
[9] Hincha Dirk K. Cryoprotectin: a plant lipid-transfer protein homologue that stabilizes membranes during freezing. In: Phi-losophical transactions of the Royal Society of London. Series B, Biological Sciences, 2002. pp 909–915
[10] Dunn M A, White A J, Vural S, Hughes M A. Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol, 1998, 38: 551–564
[11] Hughes M A, Durm M A. The molecular biology of plant accli-mation to low temperature. J Exp Bot, 1996, 47: 291–305
[12] Dunn M A, Goddard N J, Zhang L, Pearce R S, Hughes M A. Low-temperature-responsive barley genes have different control mechanisms. Plant Mol Biol, 1994, 24: 879–888
[13] Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res, 2001, 4: 29–45
[14] Thomashow M F. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In: Meyerowitz E, Somer-ville C, eds. Arabidopsis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994. pp 807–834
[15] 何涛, 贾敬芬. 青稞hbltl4.2基因的克隆及功能分析. 作物学报, 2009, 35: 295–300
He T, Jia J F. Cloning and function analysis of hblt14.2 gene in highland barley (Hordeum vulagare L. var. nudum Hook. f.). Acta Agron Sin, 2009, 35: 295–300 (in Chinese with English abstract)
[16] 李长生, 赵传志, 李爱芹, 李兴圃, 赵光敬, 王兴军. 植物脂质转运蛋白的研究. 山东农业科学, 2009, (8): 15–17
Li C S, Zhao C Z, Li A Q, Li X P, Zhao G J, Wang X J. Study of plant transfer proteins. Shandong Agric Sci, 2009, (8): 15–17 (in Chinese with English abstract)
[17] 郭晋艳, 郑晓瑜, 邹翠霞. 李秋莉. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展. 生物技术通报, 2011, (4): 16–18
Guo J Y, Zheng X Y, Zou C X, Li Q L. Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors. Biotechnol Bull, 2011, (4): 16–18 (in Chi-nese with English abstract)
[18] 邓晓青, 姚晓华, 吴昆仑, 迟德钊. 青稞LTP蛋白基因blt14.2的克隆及其在低温下的表达. 中国农业大学学报, 2012, 17(2): 18–24
Deng X Q, Yao X H, Wu K L, Chi D Z. Isolation of a blt14.2 gene encoding LTP protein of hulless barley and its expression in low temperature. J China Agric Univ, 2012, 17(2): 18–24 (in Chinese with English abstract)
[19] White A J, Dunn A M, Brown K, Hughes M A. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot, 1994, 45: 1885–1892
[20] 王艇, 苏应娟, 刘良式. 植物低温诱导蛋白和低温诱导基因的表达调控. 武汉植物学研究, 1997, 15: 80–90
Wang T, Su Y J, Liu L S. Plant low-temperature-induced protein and regulation of the expression of low-temperature-induced gene. J Wuhan Bot Res, 1997, 15: 80–90 (in Chinese with English ab-stract)
[21] Steponkus P L, Uemura M, Joseph R A, Gilmous S J, Thomashow M F. Mode of action of the CoR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA, 1998, 95: 14570–14575
[22] 邓江明, 简令成. 植物抗冻机理研究新进展: 抗冻基因表达及其功能. 植物学通报, 2001, 18: 521–530
Deng J M, Jian L C. Advances of studies on plant freez-ing-tolerance mechanism: freezing tolerance gene expression and its function. Chin Bull Bot, 2001, 18: 521–530 (in Chinese with English abstract)
[23] Hughes M A, Dunn M A, Pearce R S, White A J, Zhang L. An abscisic-acid-responsive, low temperature barley gene has ho-mology with a maize phospholipid transfer protein. Plant Cell & Environ, 1992, 15: 861–865
[24] Soufleri I A, Vergnolle C, Miginiac E, Kader J C. Germina-tion-specific lipid transfer protein cDNA in Brassica napus L. Planta, 1996, 199: 229–237
[25] Liu K H, Lin T Y. Cloning and characterization of two novel lipid transfer protein I genes in Vigna radiate. DNA Seq, 2003, 14: 420-426
[26] 李倩, 王景一, 毛新国, 李昂, 高丽锋, 刘惠民, 景蕊莲. 小麦脂质转运蛋白基因TaLTP克隆及功能分析. 作物学报, 2015, 41: 673–682
Li Q, Wang J Y, Mao X G, Li A, Gao L F, Liu H M, Jing R L. Cloning and functional analysis of lipid transfer protein gene TaLTP in wheat. Acta Agron Sin, 2015, 41: 673–682 (in Chinese with English abstract)

[1] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[2] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[3] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[4] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[5] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[6] ZHAO Xiao-Hong,BAI Yi-Xiong,WANG Kai,YAO You-Hua,YAO Xiao-Hua,WU Kun-Lun. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties [J]. Acta Agronomica Sinica, 2020, 46(4): 586-595.
[7] SUN Ting-Ting,WANG Wen-Ju,LOU Wen-Yue,LIU Feng,ZHANG Xu,WANG Ling,CHEN Yu-Feng,QUE You-Xiong,XU Li-Ping,LI Da-Mei,SU Ya-Chun. Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1 [J]. Acta Agronomica Sinica, 2019, 45(7): 1002-1016.
[8] SU Ya-Chun,WANG Zhu-Qing,LI Zhu,LIU Feng,XU Li-Ping*,QUE You-Xiong,DAI Ming-Jian,Chen Yun-Hao. Molecular Cloning and Functional Identification of Peroxidase Gene ScPOD02 in Sugarcane [J]. Acta Agron Sin, 2017, 43(04): 510-521.
[9] MENG Ya-Xiong,MENG Yi-Lin,WANG Jun-Cheng,SI Er-Jing,ZHANG Hai-Juan,REN Pan-Rong,MA Xiao-Le,LI Bao-Chun,YANG Ke,WANG Hua-Jun. Genetic Diversity and Association Analysis of Agronomic Characteristics with SSR Markers in Hulless Barley [J]. Acta Agron Sin, 2016, 42(02): 180-189.
[10] LIU Cong,XIAO Dan-Wang,HU Xue-Fang,WU Ke-Bin,GUAN Chun-Yun,XIONG Xing-Hua. Cloning and Expression Analysis of Two Homologous Genes Coding sn-Glycerol-3-Phosphate Acyltransferase 6 in Brassica napus [J]. Acta Agron Sin, 2014, 40(07): 1304-1310.
[11] HEN Na,PAN Li-Juan,CHI Xiao-Yuan,CHEN Ming-Na,WANG Tong,WANG Mian,YANG Zhen,HU Dong-Qing,WANG Dao-Yuan,YU Shan-Lin. Cloning and Expression Analysis of Fructose-1,6-Bisphosphate Aldolase Gene AhFBA1 in Peanut (Arachis hypogaea L.) [J]. Acta Agron Sin, 2014, 40(05): 934-941.
[12] LIU Ling-Ling,LIU Si-Si,WENG Jian-Feng,WANG Chang-Tao,LI Xin-Hai,ZHANG Shi-Huang,SHI Qing-Hua,WANG Li-Juan,HAO Zhuan-Fang. Cloning and Expression Analysis of Heat Shock Protein Gene ZmHSP90-1 in Maize [J]. Acta Agron Sin, 2012, 38(10): 1839-1846.
[13] WU Hun-Lun, ZHAO Yuan, CHI De-Zhao. Relationship between Polymorphism at Wx Gene and Amylose Content in Hulless Barley [J]. Acta Agron Sin, 2012, 38(01): 71-79.
[14] WANG Xiao-Min, FENG Gao, SUN Yan-Fei, LIU Bo, WANG Xiao-Jie, XU Liang-Qing, XU Xiu-Mei, WEI Guo-Rong, HUANG Li-Li, KANG Zhen-Sheng. Cloning and Expression Analysis of a CBS Domain Containing Protein Gene TaCDCP1 from Wheat [J]. Acta Agron Sin, 2010, 36(12): 2091-2098.
[15] ZHANG Zhong-Bao, LEI Min, LI Hui-Yong, ZHANG De-Feng, LIU Ying-Hui, Yun-Su, SONG Yan-Chun, WANG Tian-Yu, LI Yu. Isolation and Expression Analysis of a Drought-Induced Gene “ZmCKS2” in Maize (Zea mays L.) [J]. Acta Agron Sin, 2010, 36(06): 945-952.
Full text



No Suggested Reading articles found!