Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (12): 2312-2319.doi: 10.3724/SP.J.1006.2012.02312

• RESEARCH NOTES • Previous Articles    

Genetic Diversity in 30 Tobacco Varieties Analyzed by IMP Markers

XIE He1,GAO Yu-Long1,SONG Zhong-Bang1,GUI Yi-Jie2,FAN Long-Jiang2,XIAO Bing-Guang1,LU Xiu-Ping1,*   

  1. 1 Yunnan Academy of Tobacco Agriculture Science, Yuxi 653100, China; 2 College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310029, China
  • Received:2012-03-20 Revised:2012-08-15 Online:2012-12-12 Published:2012-10-08
  • Contact: 卢秀萍, E-mail: xplu@yntsti.com, Tel: 0877-2075055

Abstract:

Miniature Inverted repeat Transposable Element (MITEs) is a high copy number transposon family in plants. Molecular markers based on closely located MITEs are termed Inter MITE polymorphisms or IMP. We conducted the genetic distance evaluation and cluster analyses of 30 tobacco cultivars using IMP markers. Among 133 primers screened, 32 primers had steady polymorphism bands. A total of 185 polymorphic bands were detected out of 30 cultivars, with 5.78 polymorphism bands per IMP primer. The genetic distance among cultivars ranged from 0.02 to 0.81, with an average of 0.33. According to cluster analyses, 30 tobacco cultivars could be classified into three groups. Group I included sun-cured tobacco, oriental tobacco and flue-cured tobacco of northern China; group II included USA NC series, Coker series and China Yunyan series; group III included two burley tobacco cultivars. The cluster analysis result closely matched the classic relationship among the cultivars. The result showed that the IMP markers, successfully amplified in tobacco, generated fairly polymorphism and could be applied in genetic diversity analysis. Thus, IMP markers establish a foundation for Tobacco genetic study and marker-assisted selection. The genetic diversity is very low among 30 tobacco cultivars investigated in this study, indicating that a strategy to enrich tobacco germplasm for further breeding should be developed.

Key words: IMP molecular marker, Tobacco, Genetic diversity

[1]Ren N, Timko M P. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 2001, 44: 559–571



[2]Bahulikar R A, Stanculescu D, Preston C A, Baldwin I T. ISSR and AFLP analysis of the temporal and spatial population structure of the post-fire annual, Nicotiana attenuata, in SW Utah. BMC Ecol, 2004, 4: 12



[3]Xiao B-G(肖炳光), Xu Z-L(徐照丽), Chen X-J(陈学军), Shen A-R(申爱荣), Li Y-P(李永平), Zhu J(朱军). Genetic linkage map constructed by using a DH population for the flue-cured tobacco. Acta Tabaca Sin (中国烟草学报), 2006, 12(4): 35–40 (in Chinese with English abstract)



[4]Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet, 2011, 123: 219–230



[5]Bureau T E, Ronald P C, Wessler S R. A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci USA, 1996, 93: 8524–8529



[6]Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X. Sequence and analysis of rice chromosome 4. Nature, 2002, 420: 316–320



[7]Santiago N, Herráiz C, Goñi J R, Messeguer X, Casacuberta J M. Genome-wide analysis of the emigrant family of MITEs of Arabidopsis thaliana. Mol Biol Evol, 2002, 19: 2285–2293



[8]Schnable P S, Ware D, Fulton R S, Stein J C, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T A. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326: 1112–1115



[9]Feschotte C, Swamy L, Wessler S R. Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics, 2003, 163: 747–758



[10]Bureau T E, Wessler S R. Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell, 1994, 6: 907–916



[11]Yang G, Lee Y H, Jiang Y, Shi X, Kertbundit S, Hall T C. A two-edged role for the transposable element Kiddo in the rice ubiquitin2 promoter. Plant Cell, 2005, 17: 1559–1568



[12]Piriyapongsa J, Jordan I K. A family of human micro RNA genes from miniature inverted-repeat transposable elements. PloS One, 2007, 2(2): e203



[13]Bureau T E,Wessler S R. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell, 1992, 4: 1283–1294



[14]Chang R Y, O'Donoughue L S, Bureau T E. Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet, 2001, 102: 773–781



[15]Lyons M, Cardle L, Rostoks N, Waugh R, Flavell A J. Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome. Mol Genet Genom, 2008, 280: 275–285



[16]Nakayama S. Inter-MITE polymorphisms of a newly identified MITE show relationships among sugarcane (Saccharum) species. Genet Resour Crop Evol, 2012: 59: 1389–1396



[17]Kova?ík A, Koukalova B, Lim K, Matyášek R, Lichtenstein C, Leitch A, Bezděk M. Comparative analysis of DNA methylation in tobacco heterochromatic sequences. Chrom Res, 2000, 8: 527–541



[18]Flavell R B, Bennett M D, Smith J B, Smith D B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet, 1974, 12: 257–269



[19]Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar P B, Ouyang S, Jiang J, Buell C R, Baker B. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the solanaceae: new functional implications for MITEs. Genome Res, 2009, 19: 42–56



[20]Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J, Senior M L, Mitchell S E, Kresovich S, Ziegle J. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPS and pedigree. Theor Appl Genet, 1997, 95: 163–173



[21]Rohlf F J. NTSYSpc numerical taxonomy and multivariate analysis system, Ver. 2.0 Exeter Software. Setauket New York, USA, 1998



[22]Nei M. Genetic distance between populations. Am Nat, 1972, 106: 283–292



[23]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739



[24]Xiao B-G(肖炳光), Gao Y-L(高玉龙), Wu W-R(吴为人). Analysis of genetic relationships among twenty-three tobacco varieties based on simple sequence repeat (SSR) marker. Fenzi Zhiwu Yuzhong (Online), (分子植物育种-网络版), 2011, 9: 39, DOI: 10.5376/mpb.cn.2011.09.0039 (in Chinese with English abstract)



[25]Feschotte C, Jiang N, Wessler S R. Plant transposable elements: where genetics meets genomics. Nat Rev Genet, 2002, 3: 329–341



[26]Velasco R, Zharkikh A, Troggio M, Cartwright D A, Cestaro A, Pruss D, Pindo M, FitzGerald L M, Vezzulli S, Reid J. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PloS One, 2007, 2(12): e1326



[27]Wessler S R, Bureau T E, White S E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev, 1995, 5: 814–821



[28]Casacuberta J M, Santiago N. Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene, 2003, 311: 1–11



[29]Myburg A A, Remington D L, O'Malley D M, Sederoff R R, Whetten R W. High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. Biotechniques, 2001, 30: 348–347



[30]Casa A, Mitchell S, Smith O, Register Iii J, Wessler S, Kresovich S. Evaluation of Hbr (MITE) markers for assessment of genetic relationships among maize (Zea mays L.) inbred lines. Theor Appl Genet, 2002, 104: 104–110



[31]Moon H, Nicholson J, Heineman A, Lion K, van der Hoeven R, Hayes A, Lewis R. Changes in genetic diversity of US flue-cured tobacco germplasm over seven decades of cultivar development. Crop Sci, 2009, 49: 498–508



[32]Arslan B, Okumus A. Genetic and geographic polymorphism of cultivated tobaccos (Nicotiana tabacum) in Turkey. Genetika, 2006, 42: 818–823



[33]Murphy J, Cox T, Rufty R, Rodgers D. A representation of the pedigree relationships among flue-cured tobacco cultivars. Tob Sci, 1987, 31: 70–75



[34]Moon H S, Nicholson J S, Lewis R S. Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. Genome, 2008, 51: 547–559



[35]Wang Y-Y(王元英), Zhou J(周健). Main tobacco assortment blood reasons of China and the United States analysis and tobacco breeding. Acta Tabaca Sin (中国烟草学报), 1995, 2(3): 11–22 (in Chinese with English abstract)



[36]Kosman E, Leonard K. Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol, 2005, 14: 415–424



[37]Moon H S, Nifong J M, Nicholson J S, Heineman A, Lion K, van der Hoeven R, Hayes A J, Lewis R S. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci, 2009, 49: 2149–2159

[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[3] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[4] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[5] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[6] LIU Qing-Li,JIANG Yu-Zhou,ZOU Yan,ZHANG Yun-Gui,ZHANG Heng,SHI Jun-Xiong,LI Zhi-Hong. The study of carbon budget on field-tobacco ecosystem [J]. Acta Agronomica Sinica, 2020, 46(8): 1258-1265.
[7] DONG Qing-Yuan,MA De-Qing,YANG Xue,LIU Yong,HUANG Chang-Jun,YUAN Cheng,FANG Dun-Huang,YU Hai-Qin,TONG Zhi-Jun,SHEN Jun-Ru,XU Yin-Lian,LUO Mei-Zhong,LI Yong-Ping,ZENG Jian-Min. Construction and characterization of a BAC library for flue-cured tobacco line with high resistance to blank shank [J]. Acta Agronomica Sinica, 2020, 46(6): 869-877.
[8] Meng-Liang ZHAO,Li-Hui WANG,Yan-Jing REN,Xue-Mei SUN,Zhi-Qiang HOU,Shi-Peng YANG,Li LI,Qi-Wen ZHONG. Genetic diversity of phenotypic traits in 257 Jerusalem artichoke accessions [J]. Acta Agronomica Sinica, 2020, 46(5): 712-724.
[9] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[10] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[11] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[12] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[13] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[14] LIU Yi-Ke,ZHU Zhan-Wang,CHEN Ling,ZOU Juan,TONG Han-Wen,ZHU Guang,HE Wei-Jie,ZHANG Yu-Qing,GAO Chun-Bao. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers [J]. Acta Agronomica Sinica, 2020, 46(02): 307-314.
[15] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!