Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (09): 1619-1627.doi: 10.3724/SP.J.1006.2013.01619

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Different Cultivation Patterns on Photosynthetic Characteristics and Water Use Efficiency in Dryland Spring Maize

ZHANG Ren-He,HU Fu-Liang,YANG Xiao-Qin,GAO Jie,HAO Yin-Chuang,ZHANG Xing-Hua*,XUE Ji-Quan*   

  1. College of Agronomy, Northwest A&F University / Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Yangling 712100, China?
  • Received:2013-02-04 Revised:2013-06-02 Online:2013-09-12 Published:2013-07-09
  • Contact: 薛吉全, E-mail: xjq2934@163.com; 张兴华, E-mail: zhangxh4569@163.com

Abstract:

Under water-limited conditions, increasing water use efficiency (WUE) is essential for successful maize production. This study aimed at increasing grain yield and WUE through improving crop management. A maize cultivar Zhengdan 958 was planted at Changwu of Shaanxi Province in 2010 and 2011 with four treatments including local farmers’ practice (CK), high-yielding and high efficiency cultivation (HHC), super high yielding cultivation (SHC), and super high yielding and high efficiency cultivation (SHEC). The photosynthetic characteristics and WUE under the different cultivation patterns were analyzed. The results showed that the average yield for CK, HHC, SHC and SHEC was 7.7, 9.2, 11.7, and 10.6 t ha-1, respectively, and 20.1%, 52.9%, and 37.7% higher than that of control. WUE was increased by 27.8%, 60.9%, and 45.1%under HHC, SHC, and SHEC, when compared with local farmers’ practice. Compared with the control, HHC, SHC and SHEC also significantly increased net photosynthetic rate (Pn), transpiration rate (Tr), leaf water use efficiency (WUEL), electron transport rate (ETR), quantum yield (ΦPSII), photochemical quenching (qP) of photo-system II in leaf, delayed the mean decreasing rate of leaf senescence and leaf senescence duration. In addition, the post-anthesis dry matter accumulations were 29.0%, 82.3%, and 56.1% higher in HHC, SHC, and SHEC than in the control. The results indicated that grain yield and WUE could be increased through integrating and optimizing cultivation techniques in maize production, which attributed to the higher photosynthetic rate, delayed leaf senescence at latter growth stages and higher post-anthesis dry matter accumulation and transportation to grains.

Key words: Maize, Cultivation Pattern, Photosynthetic characteristics, Dry matter accumulation and transportation, Yield and WUE

[1]Li F-M(李凤民), Wang J(王静), Zhao S-L(赵松岭). The rainwater harvesting technology approach for dryland agriculture in the semiarid Loess Plateau of China. Acta Ecol Sin (生态学报), 1999, 19(2): 259–264 (in Chinese with English abstract)



[2]Xu H-M(徐洪敏), Zhu L(朱琳), Liu Y(刘毅), Chen X-P(陈新平), Li S-Q(李世清). Nitrogen absorption and allocation of spring maize on Dryland of loess plateau in different farmland water management patterns. Sci Agric Sin (中国农业科学), 2011, 43(14): 2905–2912 (in Chinese with English abstract)



[3]Wang L-M(王丽梅), Li S-Q(李世清), Shao M-A(邵明安). Effects of N and water supply on dry matter and N accumulation and distribution in maize (Zea mays L.) leaf and straw-sheath. Sci Agric Sin (中国农业科学), 2010, 43(13): 2697–2705 (in Chinese with English abstract)



[4]Wang H-L(王红丽), Zhang X-C(张绪成), Song S-Y(宋尚有). Effects of mulching methods on soil water dynamics and corn yield of rain-fed cropland in the semiarid area of China. Chin J Plant Ecol (植物生态学报), 2011, 35(8): 825–833 (in Chinese with English abstract)



[5]Liu C A, Jin S L, Zhou L M, Jia Y, Li F M, Xiong Y C, Li X G. Effects of plastic film mulch and tillage on maize productivity and soil parameters. Eur J Agron, 2009, 31: 241–249



[6]Baker N R, Rosenqvist E. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot, 2004, 55: 1607–1621



[7]Tokatlidis I S, Has V, Melidisc V, Has I, Mylonas I, Evgenidis G, Copandean A, Ninou E, Fasoula V A. Maize hybrids less dependent on high plant densities improve resource-use efficiency in rain-fed and irrigated conditions. Field Crops Res, 2011, 120: 345–351



[8]Wang X B, Dai K, Zhang D C, Zhang X M, Wang Y, Zhao Q S, Cai D X, Hoogmoed W B, Oennema O. Dyrland maize hybrids and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. Field Crops Res, 2011,120: 47–57



[9]Ding L, Wang K J, Jiang G M, Li Y G, Jiang C D, Liu M Z, Niu S L, Peng Y. Diurnal variation of gas exchange, chlorophyll fluorescence and xanthophylls cycle components of maize hybrids released in different years. Photosynthetica, 2006, 44: 26–31



[10]Wang X B, Cai D X, Hoogmoed W B, Perdok W B Oennema O. Crop residue, manure and fertilizes in dyrland maize under reduced tillage in northern China. I. Grain yields and nutrient use efficiencies. Nutr Cycl Agroecosyst, 2007, 79: 1–16



[11]Gao Q, Li C Q, Feng G Z, Wang J F, Cui Z L, Chen X P, Zhang F S. Romheld V. Understanding yield response to nitrogen to achieve high yield and high nitrogen use efficiency in rainfed corn. Agron J, 2012, 104: 165−168



[12]Li X-L(李向岭), Li C-F(李从锋), Hou Y-H(侯玉虹), Hou H-P(侯海鹏), Ge J-Z(葛均筑), Zhao M(赵明). The summer maize yield performance in different planting dates and its effect of ecological factors. Sci Agric Sin (中国农业科学), 2012, 45(6): 1074–1083 (in Chinese with English abstract)



[13]Zhang B(张宾), Zhao M(赵明), Dong Z-Q(董志强), Li J-G(李建国), Chen C-Y(陈传永), Sun R(孙锐). Establishment and test of LAI dynamic simulation model for high yield population. Acta Agron Sin (作物学报), 2007, 33(4): 612–619 (in Chinese with English abstract)



[14]Li S-K(李少昆), Wang C-T(王崇桃). Innovation and Diffusion of Corn Production Technology (玉米生产技术•创新与扩散). Beijing: Science Press, 2010. pp 1–32 (in Chinese)



[15]Wang Y-J(王永军), Sun Q-Z(孙其专), Yang J-S(杨今胜), Wang K-J(王空军), Dong S-T(董树亭), Yuan C-P(袁翠平), Wang L-C(王立春). Effects of controlled-release urea on yield and photosynthesis characteristics of maize (Zea mays L.) under different soil fertility conditions. Acta Agron Sin (作物学报), 2011, 37(12): 2233−2240 (in Chinese with English abstract)



[16]Dai M-H(戴明宏), Tao H-B(陶洪斌), Wang L-N(王利纳), Wang P(王璞). Effects of different nitrogen managements on dry matter accumulation, partition and transportation of spring maize (Zea mays L.). Acta Agric Boreali-Sin (华北农学报), 2008, 23 (1): 154–157 (in Chinese with English abstract)



[17]Chen X P, Cui Z L, Vitousek P M, Cassman K G, Maston P A, Bai J S, Meng Q F, Hou P, Yue S C, Romheld V. Integrated siol-crop system management for food security. Proc Natl Acad Sci USA, 2011, 108: 6399



[18]Huang Z-H(黄智鸿), Wang S-Y(王思远), Bao Y(包岩), Liang X-H(梁煊赫), Sun G(孙刚), Shen L(申林), Cao Y(曹洋), Wu C-S(吴春胜). Studies on dry matter accumulation and distributive characteristic in super high-yield maize. J Maize Sci (玉米科学), 2007, 15(3): 95−98 (in Chinese with English abstract)



[19]Zhang Y-Q(张玉芹), Yang H-S(杨恒山), Gao J-L(高聚林), Zhang R-F(张瑞富), Wang Z-G(王志刚), Xu S-J(徐寿军), Fan X-Y(范秀艳), Yang S-H(杨升辉). Study on canopy structure and physiological characteristics of super-high yield spring maize. Sci Agric Sin (中国农业科学), 2011, 44(21): 4367–4376(in Chinese with English abstract)



[20]Li G(李耕), Gao H-Y(高辉远), Zhao B(赵斌), Dong S-T(董树亭), Zhang J-W(张吉旺), Yang J-S(杨吉顺), Wang J-F(王敬锋), Liu P(刘鹏). Effects of drought stress on activity of photosynthesis in leaves of maize at grain filling stage. Acta Agron Sin (作物学报), 2009, 35(10): 1916–1922 (in Chinese with English abstract)



[21]Maddonni G A, Otegui M E, Cirilo A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res, 2001, 71: 183-193



[22]Demmig-Adams B, Adams W W, Baker D H, Logan B A, Bowling D R, Verhoreven A S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253–264



[23]Chen X C, Chen F J, Chen Y L, Gao Q, Yang X L, Yuan L X, Zhang F S, Mi G H. Mord maize hybrids in Northeast China exhibit increased yield potential and resource use efficacy despite adverse climate change. Globe Change Biol, 2012, 18: 1–14



[24]Cox M C, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation and translocation in wheat: I. Dry matter and nitrogen accumulation to grain. Crop Sci, 1985, 25: 430–435



[25]Song S-Y(宋尚有), Wang Y(王勇), Fan T-L(樊廷录), Gao Y-F (高育锋), Tang X-M(唐小明), Li S-Z(李尚中). Effect of nitrogen fertilizer on grain yield, quality and water use efficiency of corn in dryland of Loess Plateau. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(3): 387–392 (in Chinese with English abstract)



[26]Zhang R-H(张仁和), GuoD-W(郭东伟), Zhang X-H(张兴华), Lu H-D(路海东), Liu J-C(刘建超), Li F-Y(李凤艳), Hao Y-C(郝引川), Xue J-Q(薛吉全). Effects of drought stress on physiological characteristics and dry matter production in maize silking stage. Acta Agron Sin(作物学报), 2012, 38(10): 1884–1890 (in Chinese with English abstract)



[27]He P, Osaki M, Takebe M, Shinano T. Changes of photosynthetic characteristics in relation to leaf senescence in two maize hybrids with different senescent appearance. Photosynthetica, 2002, 40: 547–552



[28]Su X-H(苏新宏), Zhang X-L(张学林), Wang Q(王群), Li C-H(李潮海). Effects of meteorological factors on grain yield of summer corn under super-high-yield cultivation. J Maize Sci (玉米科学), 2009, 17(1): 105–107 (in Chinese with English abstract)

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[7] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[8] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[9] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[10] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[11] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[12] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[13] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[14] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[15] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!