[1]Hendry G A F, Wallace R K. The origin, distribution and evolutionary significance of fructans. In: Suzuki M, Chatterton N J, eds. Science and Technology of Fructanes. Boca Raton, FL: CRC Press, 1993. pp 119–139
[2]高翔, 佘茂云, 殷桂香, 于洋, 别晓敏, 杜丽璞, 徐惠君, 叶兴国. 小麦果聚糖合成酶基因6-SFT克隆和功能验证. 科技导报, 2009, 27(23): 70–75
Gao X, She M Y, Yu Y, Bie X M, Xu H J, Ye X G. Isolation and functional determination of fuctan biosynthesis enzyme encoding gene 6-SFT from common wheat (triticum aestivum L.). Sci & Technol Rev, 2009, 27(23): 70–75 (in Chinese with English abstract)
[3]李慧娟, 尹海英, 张学成, 杨爱芳. 转蔗糖:蔗糖-1-果糖基转移酶基因提高烟草的耐旱性. 山东大学学报(理学版), 2007, 42(1): 89–93
Li H J, Yin H Y, Zhang X C, Yang A F. Enhancement of drught resistance in transgenic tobacco expressing sucrose:sucrose 1-fructosyltransferase gene from Lactuca sativa. J Shandong Agric Univ (Nat Sci), 2007, 42(1): 89–93 (in Chinese with English abstract)
[4]Bie X M, Wang K, She M Y, Du L P, Zhang S X, Li J R, Gao X, Lin Z S, Ye X G. Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco. Plant Cell Rep, 2012, 31: 2229–2238
[5]张小芸. 转果聚糖合成关键酶基因多年生黑麦草获得及抗旱性的提高. 中国农业科学院硕士学位论文, 2010
Zhang X Y. Transformation of Lolium perenne L. with Fructan:Fructan 1-fructosyltransferase Gene from Agropyron Cristatum and Enhancement of Drought Tolerance in Transgenic Plants. MS Thesis of Chinese Academy of Agriculture Sciences, Beijing, China, 2010 (in Chinese with English abstract)
[6]王正鹏, 蔡文伟, 张树珍. 蔗糖:蔗糖果糖基转移酶(1-SST)基因的克隆与植物表达载体的构建. 浙江农业科学, 2008, (4): 418–421
Wang Z P, Cai W W, Zhang S Z. Cloning of levansucrase(I-SST) gene and construction of its plant expression vector. J Zhejiang Agric Sci, 2008, (4): 418–421 (in Chinese with English abstract)
[7]薛应龙. 植物生理学实验手册. 上海: 上海科学技术出版社, 1985. p 67
Xue Y L. Plant Physiology Protocols. Shanghai: Shanghai Science and Technology Press, 1985. p 67 (in Chinese)
[8]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1993, 10: 1391–1406
[9]Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant cell Physiol, 2004, 45: 346–350
[10]Hsieh T H, lee J T, Charng Y Y, Chan M T. tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 2002, 130: 618–626
[11]Hsieh T H, Lee J T, Yang P T, Chiu L H, Charng Y Y, Wang Y C, Chan M T. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor Ⅰ gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol, 2002, 129: 1086–1094
[12]Nakashima K, Tran L S, Nguyen D V, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51: 617–630
[13]Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant cell Physiol, 2004, 45: 346–350
[14]Hong B, Tong Z, Ma N, Li J, Kasuga M, Yamaguchi-Shinozaki K, Gao J. Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Sci China (Life Sci), 2006, 49: 436–445
[15]Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, Yamaguchi-Shinozaki K, Watanabe K N. Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep, 2007, 26: 1275–1282
[16]Bhatnagar-Mathur P, Devi M J, Reddy D S, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma K K. Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep, 2007, 26: 2071–2082
[17]Polizel A M, Medri M E, Nakashima K, Yamanaka N, Farias J R, de Oliveira M C, Marin S R, Abdelnoor R V, Marcelino-Guimaraes F C, Fuganti R. Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genet Mol Res, 2011, 10: 3641–3656
[18]Saint Pierre C, Crossa J L, Bonnett D, Yamaguchi-Shinozaki K, Reynolds M P. Phenotyping transgenic wheat for drought resistance. J Exp Bot, 2012, 63: 1799–1808
[19]Datta K, Baisakh N, Ganguly M, Krishnan S, Yamaguchi-Shinozaki K, Datta S K. Over-expression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotech J, 2012, 10: 579–586
[20]王沙生, 高荣孚, 吴冠明. 植物生理学(第2版). 北京: 北京林业出版社, 1991. p 364
Wang S S, Gang R F, Wu G M. Plant Physiology, 2nd edn. Beijing: Beijing Forestry Publishers, 1991. p 364 (in Chinese)
[21]司怀军, 张宁, 王蒂. 转甜菜碱醛脱氢酶基因提高烟草抗旱及耐盐性. 作物学报, 2007, 33: 1335−1339
Si H J, Zhang N, Wang D. Enhancement of drought and salt resistances in tobacco by transformation of betaine aldehyde dehydrogenase gene. Acta Agron Sin, 2007, 33: 1335−1339 |