Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (06): 1020-1026.doi: 10.3724/SP.J.1006.2014.01020

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Physiological Characteristics and Genetic Analysis on a Spotted-Leaf Wheat Derived from Chemical Mutation

DU Li-Fen1,**,LI Ming-Fei1,**,LIU Lu-Xiang2,WANG Chao-Jie1,LIU Yang1,XU Xi-Tang1,ZOU Shu-Fang1,XIE Yan-Zhou1,*,WANG Cheng-She1,*   

  1. 1 State Key Laboratory of Crop Stress Biology in Arid Areas / College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-10-10 Revised:2014-03-04 Online:2014-06-12 Published:2014-04-08
  • Contact: 谢彦周, E-mail: xieyanzhou@gmail.com;王成社, E-mail: wangcs2008@126.com

Abstract:

A light and temperature affected spotted-leaf mutant LF2010 (Triticum aestivum L.) was obtained from a mutagenic treatment with EMS on a wheat line H261. The bright yellow spot became evident once the third leaf will expanded, then covered later leaves and leaf sheaths of the whole plant including tissues of spike. The mutant plants differed from normal plants in terms of total chlorophyll content and net photosynthetic rate once symptom appeared on the leaves. The plant height, spike length, spike number per plant, grain weight per plant, grain number per spike, seed setting rate, and flag leaf length were lower in the mutant than in the wild type. However, the 1000-grain weight and flag leaf width of the mutant had no significant difference with those of the wild type. Genetic analysis based on F1, F2, and BC1 populations revealed that the yellow spot trait was controlled by a single recessive gene.

Key words: Spotted-leaf mutant, Photosynthetic pigments, Photosynthetic characteristics, Agronomic traits, Inheritance

[1]Walls J. The Homozygous and Heterozygous Effects of an Aurea Mutation on Plastid Development in Spruce (Picea abies (L.) Karst). Stud For Suec, 1967, 60: 1-20

[2]Beale S I. Enzymes of chlorophyll biosynthesis, Photosynth Res, 1999, 60: 43–73

[3]姜卫兵, 庄猛, 韩浩章, 戴美松, 花国平. 彩叶植物呈色机理及光合特性研究进展.园艺学报, 2005, 32: 352–358

Jang W B, Zhuang M, Han H Z, Dai M S, Hua G P. Progress on color emerging mechan ism and photosynthetic characteristics of colored-leaf plants. Acta Hort Sin, 2005, 32: 352–358 (in Chinese with English abstract)

[4]Frank H A, Violettel C A, Trautman J K, Shrevez A P, Owens T G., Albrecht A C. Cartenoids in photosynthesis: structure and photochemistry. Pure Appl Chem, 1991, 63: 109–114

[5]Grimm B, Porra R J, Rüdiger W, Scheer H. Chlorophylls and Bacterio chlorophylls: Biochemistry Biophysics, Functions and Applications, Advances in Photosynthesis and Respiration, Dordrecht, the Netherlands: Springer, 2006. pp 397–412

[6]曹莉, 王辉, 孙道杰, 冯毅. 小麦黄化突变体光合作用及叶绿素荧光特性研究. 西北植物学报, 2006, 26: 2083–2087

Cao L, Wang H, Sun D J, Feng Y.  Photosynthesis and chlorophyll fluorescence characters of xantha wheat mutants. Acta Bot Boreali-Occident Sin, 2006, 26: 2083–2087 (in Chinese with English abstract)

[7]韩锁义, 杨玛丽, 陈远东,于静静, 赵团结, 盖钧镒, 喻德跃. 大豆“南农94216”突变体库的构建及部分性状分析. 核农学报, 2008, 22: 131-135

Han S Y, Yang M L, Chen Y D, Yu J J, Zhao T J, Gai J Y, Yu D Y. Construction of mutant library for soybean ‘Nannong 94-16’and analysis of some characters . J Nucl Agric Sci, 2008, 22: 131–135 (in Chinese with English abstract)

[8]赵洪兵, 郭会君, 赵林姝, 古佳玉, 赵世荣, 李军辉, 刘录祥. 作物学报, 2011, 37: 119–126

Zhao H B, Guo H J, Zhao L S, Gu J Y, Zhao S R, Li J H, Liu L X. Agronomic traits and photosynthetic characteristics of chlorophyll-deficient wheat mutant induced by spaceflight environment. Acta Agron Sin, 2011, 37: 119–126 (in Chinese with English abstract)

[9]Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic deflects of Sodium azide in rice. Crop Sci, 1980, 20: 663–668

[10]Takahashi A, Kawasaki T, Henmi K, Shii K, Kodama O, Satoh H, Shimamoto K. Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J, 1999, 17: 535–545

[11]Badigannavar A M, Kale D M, Eapen, Murty G S S. Inheritance of disease lesion mimic leaf trait in groundnut. J Hered, 2002,93: 50–52

[12]Hu G S, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095–1105

[13]Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daelen R, Van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695–705

[14]Ishikawa A, Okamoto H, Iwasaki Y, Asahi T. A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J, 2001, 27: 89-99

[15]黄奇娜, 杨杨, 施勇烽, 陈洁, 吴建利. 水稻斑点叶变异研究进展. 中国水稻科学, 2010, 24: 108–115

Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L. Recent advances in research on spotted-leaf mutants of rice (Oryza sativa). Chin J Rice Sci, 2010, 24: 108–115 (in Chinese with English abstract)

[16]Neuffer M G, Calvert O H. Dominant disease lesion mimics in maize. J Hered, 1975: 66: 265–270

[17]Hu G S, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095–1105

[18]Nair S K, Tomar S M S. Genetical and anatomical analyses of a leaf flecking mutant in Triticum aestivum L. Euphytica, 2001,121: 53–58

[19]Kamlofski C A, Antonelli E, Bender C, Jaskelioff M., Danna C H, Ugalde R., Acevedo A. A lesion-mimic mutant of wheat with enhanced resistance to leaf rust. Plant Pathol, 2007, 56: 46–54

[20]Kamlofski C A, Acevedo A. The HLP mutation confers enhanced resistance to leafrust in different wheat genetic backgrounds. Agric Sci, 2010, 1: 56–61

[21]Luo P G, Ren Z L. Wheat leaf chlorosis controlled by a single recessive gene. J Plant Physiol Mol Biol, 2006, 32: 330–338

[22]Li T, Bai G H. Lesion mimic associates with adult plant resistance to leaf rust infection in wheat. Theor Appl Genet., 2009, 119: 13–21

[23]Yao Q, Zhou R H, Fu T H, Wu W R, Zhu Z D, Li A L, Jia J Z. Characterization and mapping of complementary lesion-mimic genes lm1 and lm2 in common wheat. Theor Appl Genet, 2009, 119: 1005–1012

[24]王建军, 朱旭东, 王林友, 张利华, 薛庆中, 何祖华. 水稻类病变突变体lrd40的抗病性与细胞学分析. 中国水稻科学, 2005, 19: 111–116

Wang J J, Zhu X D, Wang L Y, Zhang L H, Xue Q Z, He Z H. Disease resistance and cytological analyses on lesion resembling disease mutant lrd40 in Oryza sativa. Chin J Rice Sci, 2005, 19: 111–116 (in Chinese with English abstract)

[25]马健阳, 陈孙禄, 张建辉, 董彦君, 滕胜. 一个水稻类病条纹斑突变体的鉴定和遗传定位. 中国水稻科学, 2011, 25: 150–156

Ma J Y, Chen S L, Zhang J H, Dong Y J, Teng S. Identification and genetic mapping of a lesion mimic strip mutant in rice. Chin J Rice Sci , 2011, 25: 150–156 (in Chinese with English abstract)

[26]Koch E, Slusarenko A. Arabidopsis is susceptible to ilnfection by a downy mildew fungus. Plant Cell, 1990, 2: 437-445

[27]Hill C M, Pearson S A, Smith A J, Rogers L J. Inhibition of chlorophyll synthesis in Hordeum vulgare by 3-amino 2,3-dihydrobenzoic acid (gabaculin). Biosci Rep, 1985, 5: 775–781

[28]王建军, 张礼霞, 王林友, 张利华, 竺朝娜, 何祖华, 金庆生, 范宏环, 于新. 水稻类病变(lesion resembling disease)突变体对光照和温度的诱导反应. 中国农业科学, 2010, 43: 2039–2044

Wang J J, Zhang L X, Wang L Y, Zhang L H, Zhu C N, He Z H, Jin Q S, Fan H H, Yu X. Response to illumination induction and effect of temperature on lesion formation of lrd (lesion resembling disease) in rice. Sci Agric Sin, 2010, 43: 2039–2044 (in Chinese with English abstract)

[29]Hu G, Richter T E, Hulbert S H, Pryor T. Disease lesion mimicry caused by mutations in the rust resistance gene rp1. Plant Cell, 1996, 8: 1367–1376

[30]Davis M S, Forman A, Fajer J. Ligated chlorophyll cation radicals: their function in photosystem II of plant photosynthesis. Proc Natl Acad Sci USA, 1979, 76: 4170–4174

[31]汪斌, 兰涛, 吴为人, 李维明. 水稻叶绿素含量的QTL定位. 遗传学报, 2003, 30: 1127–1132

Wang B, Lan T , Wu W R, Li W M. Mapping of QTLs controlling chlorophyll content in rice. Acta Genet Sin, 2003, 30: 1127–1132 (in Chinese with English abstract)

[32]Avenson T J, Cruz J A, Kanazawa A, Kramer D M. Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA, 2005, 102: 9709–9713

[33]许大全. 光合作用气孔限制分析中的一些问题. 植物生理学通讯, 1997, 33: 241–244

Xu D Q. Some problems in stomatal analysis of phtosynthesis. Plant Physiol Commun, 1997, 33: 241–244 (in Chinese)

[34]孙艳丽, 李卓夫, 张喜君. 冬小麦主要品质性状和产量性状杂种优势及其相关性的研究. 黑龙江农业科学, 2002, (2): 13–15

Sun Y L, Li Z F, Zhang X J. Study on the coordinating activity among major agromomic traits in wheat. Heilongjiang Agric Sci, 2002, (2): 13–15

[36]Ryals J A, Neuenschwander U H, Willits M G. Systemic acquired resistance. Plant Cell, 1996, 8: 1809–1819

[35]Wu C J, Bordeos A, Madamba M R S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619

[1] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[2] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[3] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[4] ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833.
[5] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
[6] ZHANG Yun, WANG Dan-Mei, WANG Xiao-Yuan, REN Qing-Wen, TANG Ke, ZHANG Li-Yu, WU Yu-Huan, LIU Peng. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress [J]. Acta Agronomica Sinica, 2021, 47(12): 2490-2500.
[7] FENG Ke-Yun, WANG Ning, NAN Hong-Yu, GAO Jian-Gang. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton [J]. Acta Agronomica Sinica, 2021, 47(1): 125-137.
[8] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[9] DU Jin-Yong,CHAI Qiang,WANG Yi-Fan,FAN Hong,HU Fa-Long,YIN Wen,LI Deng-Ye. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping [J]. Acta Agronomica Sinica, 2019, 45(9): 1398-1406.
[10] LI Chao-Su,WU Xiao-Li,TANG Yong-Lu,LI Jun,MA Xiao-Ling,LI Shi-Zhao,HUANG Ming-Bo,LIU Miao. Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage [J]. Acta Agronomica Sinica, 2019, 45(8): 1260-1269.
[11] JIA Xiao-Ping,QUAN Jian-Zhang,WANG Yong-Fang,DONG Zhi-Ping,YUAN Xi-Lei,ZHANG Bo,LI Jian-Feng. Effects of different photoperiod conditions on agronomic traits of foxtail millet [J]. Acta Agronomica Sinica, 2019, 45(7): 1119-1127.
[12] Yong-Fu REN,Guo-Peng CHEN,Tian PU,Cheng CHEN,Jin-Xi ZENG,Xiao PENG,Yan-Wei MA,Wen-Yu YANG,Xiao-Chun WANG. Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system [J]. Acta Agronomica Sinica, 2019, 45(5): 728-739.
[13] Si-Long CHEN,Zeng-Shu CHENG,Ya-Hui SONG,Jin WANG,Yi-Jie LIU,Peng-Juan ZHANG,Yu-Rong LI. Leaf photosynthesis and matter production dynamic characteristics of peanut varieties with high yield and high oil content [J]. Acta Agronomica Sinica, 2019, 45(2): 276-288.
[14] Hai-Yue YU,Yan YAN,Yu-Shi ZHANG,Ming-Cai ZHANG,Zhao-Hu LI. Regulatory effects of coronatine on photosynthetic characteristics and yield of soybean under different irrigation conditions [J]. Acta Agronomica Sinica, 2019, 45(12): 1851-1858.
[15] XU Yi,ZHANG Lie-Mei,GUO Yan-Chun,QI Jian-Min,ZHANG Li-Lan,FANG Ping-Ping,ZHANG Li-Wu. Core collection screening of a germplasm population in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2019, 45(11): 1672-1681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!