Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (02): 175-186.doi: 10.3724/SP.J.1006.2015.00175
• REVIEW • Next Articles
PAN Ying-Hong
[1]Schork N J. Genetics of complex disease—Approaches, problems, and solutions. Am J Resp Crit Care, 1997, 156: S103–S109 [2]Davis B D. The isolation of biochemically deficient mutants of bacteria by means of Penicillin. Proc Natl Acad Sci USA, 1949, 35: 1–10[3]Soule M. Phenetics of natural populations I. Phenetic relationships of insular populations of the side-blotched lizard. Evolution, 1967, 21: 584–591[4]Conrad M, Rizki M M. The artificial worlds approach to emergent evolution. BioSystems, 1989, 23: 247–258[5]Mahner M, Kary M. What exactly are genomes, genotypes and phenotypes? And what about phenomes? J Theor Biol, 1997, 186: 55–63[6]Varki A, Wills C, Perlmutter D, Woodruff D, Gage F, Moore J, Semendeferi K, Bernirschke K, Katzman R, Doolittle R. Great ape phenome project? Science, 1998, 282: 239–240[7]Strohman R C. Linear genetics, non-linear epigenetics: complementary approaches to understanding complex diseases. Integr Phys Beh Sci, 1995, 30: 273–282 [8]Dulbecco R. A turning point in cancer research: sequencing the human genome. Science, 1986, 231: 1055–1056[9]Schilling C H, Edwards J S, Palsson B O. Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol Prog, 1999, 15: 288–295[10]Kelsoe J R, Niculescu A B. Finding genes for bipolar disorder in the functional genomics era: from convergent functional genomics to phenomics and back. CNS Spectr, 2002, 7: 215–226 [11]Bader G D, Heilbut A, Andrews B, Tyers M, Hughes T, Boone C. Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol, 2003, 13: 344–356[12]Sauer U. High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotech, 2004, 15: 58–63[13]Joy T, Hegele R A. Genetics of metabolic syndrome: is there a role for phenomics? Curr Atheroscler Rep, 2008, 10: 201–208[14]Whiteley A R, Derome N, Rogers S M, St-Cyr J, Laroche J, Labbe A, Nolte A, Renaut S, Jeukens J, Bernatchez L. The phenomics and expression quantitative trait locus mapping of brain transcriptomes regulating adaptive divergence in lake whitefish species pairs (Coregonus sp.). Genetics, 2008, 180: 147–164[15]Bilder R M, Sabb F W, Cannon T D, London E D, Jentsch J D, Parker D S, Poldrack R A, Evans CFreimer N B. Phenomics: the systematic study of phenotypes on a genome-wide scale. Neuroscience, 2009, 164: 30–42[16]Lanktree M B, Hassell R G, Lahiry P, Hegele R A. Phenomics: expanding the role of clinical evaluation in genomic studies. J Invest Med, 2010, 58: 700–706[17]Houle D, Govindaraju D R, Omholt S. Phenomics: the next challenge. Nat Rev Genet, 2010, 11: 855–866[18]Maddatu T P, Grubb S C, Bult C J, Bogue M A. Mouse phe-nome database (MPD). Nucl Acids Res, 2012, 40(D1): D887–D894 [19]Yang L, Wei G, Tang K, Nardini C, Han J D. Understanding human diseases with high-throughput quantitative measurement and analysis of molecular signatures. Sci China Life Sci, 2013, 56: 213–219[20]Weckwerth W, Kahl G. The Handbook of Plant Metabolomics. Weinheim: Wiley-Blackwell Press, 2013. pp 1–100[21]Hancock J M. Introduction to “Phenomics”. In: Hancock J M, ed. Phenomics. Boca Raton: CRC Press, 2014. pp 1–7[22]Pieruschka R, Poorter H. Phenotyping plants: genes, phenes and machines Introduction. Funct Plant Biol, 2012, 39: 813–820 [23]Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818–822[24]Yang W, Duan L, Chen G, Xiong L, Liu Q. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol, 2013, 16: 180–187[25]Dhondt S, Wuyts N, Inze D. Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci, 2013, 18: 433–444[26]White J W, Andrade-Sanchez P, Gore M A, Bronson K F, Coffelt T A, Conley M M, Feldmann K A, French A N, Heun J T, Hunsaker D J, Jenks M A, Kimball B A, Roth R L, Strand R J, Thorp K R, Wall G W, Wang G Y. Field-based phenomics for plant genetics research. Field Crops Res, 2012, 133: 101–112 [27]Johannsen W. The genotype conception of heredity. Am Nat, 1911, 45: 129–159[28]Baylin S B, Gazdar A F, Minna J D, Bernal S D, Shaper J H. A unique cell-surface protein phenotype distinguishes human small-cell from non-small-cell lung cancer. Proc Natl Acad Sci USA, 1982, 79: 4650–4654[29]Jimenez-Marin D, Dessauer H C. Protein phenotype variation in laboratory populations of Rattus norvegicus. Comp Bio-chem Phys B: Comp Biochem, 1973, 46: 487-488[30]Pringle C, Duncan I, Stevenson M. Isolation and characteri-zation of temperature-sensitive mutants of vesicular stomatitis virus, New Jersey serotype. J Virol, 1971, 8: 836–841[31]Frey T K, Youngner J S. Novel phenotype of RNA synthesis expressed by vesicular stomatitis virus isolated from persistent infection. J Virol, 1982, 44: 167–174[32]Parsons P. The behavioral phenotype in mice. Am Nat, 1974, 108: 377–385[33]De C B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol, 2001, 13: 721–728[34]Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell, 2001, 13: 351–367[35]Okusu H, Ma DNikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol, 1996, 178: 306–308[36]Fiorani F, Schurr U. Future scenarios for plant phenotyping. Annu Rev Plant Biol, 2013, 64: 267–291[37]Geissler T, Wessjohann L A. A whole-plant microtiter plate assay for drought stress tolerance-inducing effects. J Plant Growth Regul, 2011, 30: 504–511[38]Appels R. Plant phenome to genome: a mini-review. Funct Plant Biol, 2012, 39: 3–8[39]Poorter H, Niinemets U, Walter A, Fiorani F, Schurr U. A method to construct dose-response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. J Exp Bot, 2010, 61: 2043–2055[40]Cobb J N, DeClerck G, Greenberg A, Clark R, McCouch S. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet, 2013, 126: 867–887[41]Brown T B, Cheng R, Sirault X R, Rungrat T, Murray K D, Trtilek M, Furbank R T, Badger M, Pogson B J, Borevitz J O. TraitCapture: genomic and environment modelling of plant phenomic data. Curr Opin Plant Biol, 2014, 18: 73–79[42]Rengel D, Arribat S, Maury P, Martin-Magniette M L, Hourlier T, Laporte M, Vares D, Carrere S, Grieu P, Balzergue S, Gouzy J, Vincourt P, Langlade N B. A gene-phenotype network based on genetic variability for drought responses reveals key physiological processes in controlled and natural environments. PloS One, 2012, 7: e45249[43]Zamir D. Where have all the crop phenotypes gone? PloS Biol, 2013, 11: e1001595[44]Kohler S, Doelken S C, Mungall C J, Bauer S, Firth H V, Bailleul-Forestier I, Black G C M, Brown D L, Brudno M, Campbell J, FitzPatrick D R, Eppig J T, Jackson A P, Freson K, Girdea M, Helbig I, Hurst J A, Jahn J, Jackson L G, Kelly A M, Ledbetter D H, Mansour S, Martin C L, Moss C, Mumford A, Ouwehand W H, Park S M, Riggs E R, Scott R H, Sisodiya S, Van Vooren S, Wapner R J, Wilkie A O M, Wright C F, Vulto-van Silfhout A T, de Leeuw N, de Vries B B A, Washingthon N L, Smith C L, Westerfield M, Schofield P, Ruef B J, Gkoutos G V, Haendel M, Smedley D, Lewis S E, Robinson P N. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucl Acids Res, 2014, 42(D1): D966–D974[45]Mungall C J, Gkoutos G V, Smith C L, Haendel M A, Lewis S E, Ashburner M. Integrating phenotype ontologies across multiple species. Genome Biol, 2010, 11: R2[46]Hu H, Zhang J Z, Sun X Y, Zhang X M. Estimation of leaf chlorophyll content of rice using image color analysis. Can J Remote Sens, 2013, 39: 185–190[47]Rousseau C, Belin E, Bove E, Rousseau D, Fabre F, Berruyer R, Guillaumes J, Manceau C, Jacques M A, Boureau T. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods, 2013, 9: 17[48]Feher-Juhasz E, Majer P, Sass L, Lantos C, Csiszar J, Turoczy Z, Mihaly R, Mai A, Horvath G V, Vass I, Dudits D, Pauk J. Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. Acta Physiol Plant, 2014, 36: 663–673[49]Matsuda O, Tanaka A, Fujita T, Iba K. Hyperspectral imaging techniques for rapid identification of Arabidopsis mutants with altered leaf pigment status. Plant Cell Physiol, 2012, 53: 1154–1170[50]De S N. Machines learn phenotypes. Nat Methods, 2013, 10: 38–38 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[3] | WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278. |
[4] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[5] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[6] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[7] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[8] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[9] | LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564. |
[10] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[11] | YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681. |
[12] | WANG Wei-Xia, LAI Feng-Xiang, HU Hai-Yan, HE Jia-Chun, WEI Qi, WAN Pin-Jun, FU Qiang. Effect of 11-year storage of GMO reference material at ultra-low temperature on nucleic acid detection of standard matrix sample of transgenic crop [J]. Acta Agronomica Sinica, 2022, 48(1): 238-248. |
[13] | WANG Ya-Liang, ZHU De-Feng, ZHANG Yu-Ping, CHEN Ruo-Xia, XIANG Jing, CHEN Hui-Zhe, CHEN Jiang-Hua, WANG Feng. Analysis on the plant growth and yield formation of double cropping late season hybrid rice in machine transplanting with long seedling age by precision drill sowing [J]. Acta Agronomica Sinica, 2022, 48(1): 215-225. |
[14] | WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653. |
[15] | LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740. |
|