Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (02): 240-250.doi: 10.3724/SP.J.1006.2015.00240

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression of Three Genes Involved in the Biosynthesis of Chlorophyll in Different Albescent Stages of “Baiye 1”

MA Chun-Lei1,2,YAO Ming-Zhe1,WANG Xin-Chao1,JIN Ji-Qiang1,2,MA Jian-Qiang1,CHEN Liang1,*   

  1. 1 Tea Research Institute of Chinese Academy of Agricultural Sciences / National Center for Tea Improvement / Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China; 2 Graduate School of Chinese Academy of Agriculture Sciences, Beijing 100081, China
  • Received:2014-06-18 Revised:2014-09-30 Online:2015-02-12 Published:2014-11-18
  • Contact: 陈亮,E-mail: liangchen@mail.tricaas.com E-mail:malei220@mail.tricaas.com

Abstract:

Chlorophyll is one of the main pigments participating in photosynthesis in plant chloroplasts, and its biosynthesis is crucial for higher plant. In this article, we cloned and characterized three important genes involved in the biosynthesis of chlorophyll which were CsGluTR, CsChlS, and CsCAO (GenBank accession number HQ660371, HQ660370, and HQ660369) lead on the results of cDNA microarray hybridization. The full-length cDNA of CsGluTR was 2165 bp, containing a 1665 bp ORF encoding a 554 amino acids protein, and its 3′untranslated region had an obvious polyadenylation signal. The deduced protein molecular weight was 60.6 kD and its theoretical isoelectric point was 8.78. The obtained cDNA of CsChlS was 1463 bp in length, containing a 1125 bp ORF which encoded 374 amino acid residues. The deduced protein molecular weight was 40.5 kD and its theoretical isoelectric point was 8.58. The full-length of CsCAO was 2146 bp, containing a 1611 bp ORF encoding a 536 amino acids protein. The deduced amino acid sequence of CsGluTR, CsChlS, and CsCAO from tea plant shared high identity with those of other species, for instance the similarity of 79%, 90% and 77 % with Vitis vinifera, respectively. The result of Real-time RT-PCR analysis showed a coordinated expression of CsChlS and CsCAO, which was corresponded with the change of the albino phenotype. However, there were small changes in the expression level of CsGluTR between the normal and albino leaves. These results implied that the biosynthesis of chlorophyll is completely hindered in albino leaves, causing the decline of pigment content and the albino phenotype.

Key words: Tea plant (Camellia sinensis), Glutamyl-tRNA reductase, Chlorophyll synthase, Chlorophyllide a oxygenase, Gene cloning, Expression analysis

[1]Nagata N, Tanaka R, Satoh S, Tanaka A. Identifieation of a vinyl reduetase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus Species. Plant Cell, 2005, 17: 233–240

[2]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309–312

[3]吴自明, 张欣, 万建民. 叶绿素生物合成的分子调控. 植物生理学通讯, 2008, 44: 1064–1070

Wu Z M, Zhang X, Wan J M. Molecular regulation of chlorophyll biosynthesis. Plant Physiol Commun, 2008, 44: 1064–1070 (in Chinese with English abstract)

[4]欧立军. 水稻叶色突变体的高光合特性. 作物学报, 2011, 37: 1860–1867

Ou L J. High photosynthetic efficiency of leaf colour mutant of rice (Oryza sativa L.). Acta Agron Sin, 2011, 37: 1860–1867 (in Chinese with English abstract)

[5]Zhao H B, Guo H J, Zhao L S, Gu J Y, Zhao S R, Li J H, Liu L X. Agronomic traits and photosynthetic characteristics of chlorophyll-deficient wheat mutant induced by spaceflight environment. Acta Agron Sin, 2011, 37: 119–126

[6]Zhang H, Zhang D, Han S, Zhang X, Yu D. Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breed, 2011, 130: 133–138

[7]张立科, 李志彬, 刘海燕, 李如海, 陈满元, 陈爱国, 钱益亮, 华泽田, 高用明, 朱苓华, 黎志康. 两个新的水稻叶色突变体形态结构与遗传定位研究. 中国农业科学, 2010, 43: 223–229

Zhang L K, Li Z B, Liu H Y, Li R H, Chen M Y, Chen A G, Qian Y L, Hua Z T, Gao Y M, Zhu L H, Li Z K. Study on morphological structure and genetic mapping of two novel leaf color mutants in rice. Sci Agric Sin, 2010, 43: 223–229 (in Chinese with English abstract)

[8]Karaca M, Saha S, Callahan F E, Jenkins J N, Read J J, Percy R G. Molecular and cytological characterization of a cytoplasmic-specific mutant in pima cotton (Gossypium barbadense L.). Euphytica, 2004, 139: 187–197

[9]Kurata N, Miyoshi K, Nonomura K, Yamazaki Y, Ito Y. Rice mutants and genes related to organ development, mor-phogenesis and physiological traits. Plant Cell Physiol, 2005, 46: 48–62

[10]刘元义, 游继芳. “安吉白茶”可持续发展的调查与研究. 茶叶, 2013, 39: 75–78

Liu Y Y, You J F. A study on sustainable development of ‘Anji Baicha’ industry. J Tea, 2013, 39: 75–78 (in Chinese with English abstract)

[11]李素芳. 安吉白茶返白机理的研究. 中国计量学院学报, 2002, 13: 214–217

Li S F. Studies on the mechanism of the leaf color change in Anji Baicha (Camellia sinensis). J China Inst Metrol, 2002, 13: 214–217 (in Chinese with English abstract)

[12]成浩, 李素芳, 陈明. 安吉白茶特异性状的生理生化本质. 茶叶科学, 1999, 19: 87–92

Cheng H, Li S F, Chen M. Physiological and biochemical essence of the extraordinary characters of Anji Baicha. J Tea Sci, 1999, 19: 87–92 (in Chinese with English abstract)

[13]陆建良, 梁月荣, 倪雪华, 汪湖北. 安吉白茶阶段性返白过程中的生理生化变化. 浙江农业大学学报, 1999, 25: 245–247

Lu J L, Liang Y R, Ni X H, Wang H B. Changes of physiological and biochemical characters during stage albescent process of Anji Baicha. J Zhejiang Agric Univ, 1999, 25: 245–247 (in Chinese with English abstract)

[14]Ma C L, Chen L, Wang X C, Jin J Q, Ma J Q, Yao M Z, Wang Z L. Differential expression analysis of different albescent stages of ‘Anji Baicha’(Camellia sinensis (L.) O. Kuntze) using cDNA microarray. Sci Hort, 2012, 148: 246–254

[15]Wang X C, Zhao Q Y, Ma C L, Zhang Z H, Cao H L, Kong Y M, Yue C, Hao X Y, Chen L, Ma J Q, Jin J Q, Li X and Yang Y J. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genom, 2013, 14: 415

[16]马春雷, 姚明哲, 王新超, 金基强, 陈亮. 茶树2个MYB转录因子基因的克隆及表达分析. 林业科学, 2012, 48: 31–37

Ma C L, Yao M Z, Wang X C, Jin J Q, Chen L. Cloning and expression of two MYB transcription factors in tea plant (Camellia sinensis). Sci Silvae Sin, 2012, 48: 31–37 (in Chinese with English abstract)

[17] Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2?ΔΔCt method. Methods, 2001, 25: 402–408

[18]Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire M K, Geer L Y, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Lu S, Marchler G H, Song J S, Thanki N, Yamashita R A, Zhang D, Bryant S H. CDD: a conserved domain database for the functional annotation of proteins. Nucl Acids Res, 2013, 41: D348–352

[19]Br?uer L, Brandt W, Schulze D, Zakharova S, Wessjohann L. A structural model of the membrane-bound aromatic prenyltransferase UbiA from E. coli. Chembiochem, 2008, 9: 982–992

[20]Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H, Tanaka A. Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol, 1996, 110: 1223–1230

[21]徐培洲, 李云, 袁澍, 张红宇, 彭海, 林宏辉, 汪旭东, 吴先军. 叶绿素缺乏水稻突变体中光系统蛋白和叶绿素合成特性的研究. 中国农业科学, 2006, 39: 1299–1305

Xu P Z, Li Y, Yuan S, Zhang H Y, Peng H, Lin H H, Wu X J. Studies of photosystem complexes and chlorophyll synthesis in chlorophyll-deficient rice mutant W1. Sci Agric Sin, 2006, 39: 1299–1305 (in Chinese with English abstract)

[22]马建强, 姚明哲, 陈亮. 茶树遗传图谱研究进展. 茶叶科学, 2010, 30: 329–335

Ma J Q, Yao M Z, Chen L. Research progress in genetic map of tea plant (Camellia sinensis). J Tea Sci, 2010, 30: 329–335 (in Chinese with English abstract)

[23]邢才, 王贵学, 黄俊丽, 吴金钟. 植物叶绿素突变体及其分子机理的研究进展. 生物技术通报, 2008, (5): 10–13

Xing C, Wang G X, Huang J L, Wu J Z. Research on chlorophyll mutation of plants and molecular mechanism. Biotech Bull, 2008, (5): 10–13 (in Chinese with English abstract)

[24]王让剑. 茶树叶绿素生物合成及其检测与提取研究进展. 福建农业学报, 2012, 27: 1401–1408

Wang R J. Biosynthesis, detection and extraction of tea chlorophyll. Fujian J Agric Sci, 2012, 27: 1401–1408 (in Chinese with English abstract)

[25]Moser J, Schubert W D, Beier V, Bringemeier I, Jahn D, Heinz D W. V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J, 2001, 20: 6583–6590

[26]Kumar A M, Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol, 2000, 122: 49–56

[27]Tanaka A, Ito H, Tanaka R, Tanaka N K, Yoshida K, Okada K. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyII a. Proc Natl Acad Sci USA, 1998, 95: 12719–12723

[28]Bougri O, Grimm B. Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J, 1996, 9: 867–878

[29]Rudiger W. Chlorophyll metabolism: From outer space down to the molecular level. Phytochem, 1997, 46: 1151–1167

[30]Paulsen H, Rümler U, Rüdiger W. Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta, 1990, 181: 204–211

[31]Gaubier P, Wu H J, Laudie M, Delseny M, Grellet F. A chlorophyll synthetase gene from Arabidopsis thaliana. Mol General Genet, 1995, 249: 58–64

[32]Lopez J C, Ryan S, Blankenship R E. Sequence of the bchG gene from Chloroflexus aurantiacus: relationship between chlorophyll synthase and other polyprenyltransferases. J Bacteriol, 1996, 178: 3369–3373

[33]Schmid H C, Oster U, Koegel J, Lenz S, Ruediger W. Cloning and characterisation of chlorophyll synthase from Avena sativa. Biol Chem, 2001, 382: 903–911

[34]Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[35]Oster U, Tanaka R, Tanaka A, Rüdiger W. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J, 2000, 21: 305–310

[36]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818

[37] 王新超, 赵丽萍, 姚明哲, 陈亮, 杨亚军. 安吉白茶正常与白化叶片基因表达差异的初步研究. 茶叶科学, 2008, 28: 50–55

Wang X C, Zhao L P, Yao M Z, Chen L, Yang Y J. Preliminary study on gene expression differences between normal leaves and albino leaves of Anji Baicha (Camellia sinensis cv. Baiye1). J Tea Sci, 2008, 28: 50–55 (in Chinese with English abstract)

[38]李娟, 刘硕谦, 刘仲华, 李勤, 吴扬, 邓婷婷, 黄建安. ‘安吉白茶’抑制消减杂交cDNA文库的构建及初步分析. 中国农学通报, 2011, 27: 96–101

Li J, Liu S Q, Liu Z H, Li Q, Wu Y, Deng T T, Huang J A. Construction and preliminary analyses of SSH cDNA libraries of Anji Baicha (Camellia sinensis). Chin Agric Sci Bull, 2011, 27: 96–101 (in Chinese with English abstract)

[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[4] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[5] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[6] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[7] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[8] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[9] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[10] YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862.
[11] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[12] LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032.
[13] Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711.
[14] LIANG Si-Wei,JIANG Hao-Liang,ZHAI Li-Hong,WAN Xiao-Rong,LI Xiao-Qin,JIANG Feng,SUN Wei. Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize [J]. Acta Agronomica Sinica, 2020, 46(4): 532-543.
[15] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!