Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (02): 228-239.doi: 10.3724/SP.J.1006.2015.00228

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Expression Changes of Transcription Factors in Susceptible and Resistant Upland Cotton Cultivars (Gossypium hirsutum L.) in Response to Fusarium wilt

HAN Ze-Gang1,ZHAO Zeng-Qiang1,HE Lan-Lan1,CHAI Meng-Liang2,LI Hui-Hui1,ZHANG Wei1,*   

  1. 1 Agricultural College, Shihezi University, Shihezi 832000, China; 2 College of Life Sciences, Shihezi University, Shihezi 832000, China
  • Received:2014-05-27 Revised:2014-09-30 Online:2015-02-12 Published:2014-11-11
  • Contact: 张薇, E-mail: zhw_agr@shzu.edu.cn E-mail:hanzegang501706851@126.com

Abstract:

The Solexa sequencing was used to study the expression changes of transcription factors and their families in upland cotton cultivars susceptible and resistant to Fusarium wilt. A total of 39 transcription factor families and 433 transcription factors in Zhongmiansuo 12 and 58 transcription factor families and 588 transcription factors in Xinluzao 7 were changed in expression in at least one comparison group induced by Fusarium wilt. The number of transcription factor families responsed to Fusarium wilt was more in Xinluzao 7 than in Zhongmiansuo 12, and the number of down-regulated genes was more than that of up-regulated genes in two varieties. After the induction by Fusarium wilt, in the process of time, the number of transcription factor families and transcription factors responsed to the Fusarium wilt in two cultivars showed the same changing trend of increase first and decrease then. The maximum number was reached after six hours in Zhongmiansuo 12, while at three hours after the inducing in Xinluzao 7. Among six comparison groups, there were nine overlapping transcription factors in six transcription factor families of Zhongmiansuo 12 and Zhongmiansuo 31 overlapping transcription factors in 17 transcription factor families of Xinluzao 7. The expression of transcription factor showed strong cultivar specificity among varieties tolerant to Fusarium wilt. Except for 37 transcription factor families shared between two cultivars, two transcription factor families were unique to Zhongmiansuo 12 and Zhongmiansuo 15 transcription factor families were unique to Xinluzao 7.

Key words: Upland cotton, Fusarium wilt, Solexa sequencing, Transcription factor

[1]吴征彬, 杨业华, 刘小丰, 王强. 枯萎病对棉花产量和纤维品质的影响. 棉花学报, 2004, 16: 236–239



Wu Z B, Yang Y H, Liu X F, Wang Q. Effect of Fusarium wilt on the cotton yield and fiber quality. Cotton Sci, 2004, 16: 236–239 (in Chinese with English abstract)



[2]徐秋华, 张献龙, 聂以春, 冯纯大. 我国棉花抗枯萎病品种的遗传多样性分析. 中国农业科学, 2002, 35: 272–276



Xu Q H, Zhang X L, Nie Y C, Feng C D. Genetic diversity evaluation of cultivars (G. hirsumtum L.) resistant to Fusarium wilt by RAPD markers. Sci Agric Sin, 2002, 35: 272–276 (in Chinese with English abstract)



[3]金慧, 栾雨时. 转录因子在植物抗病基因工程中的研究进展. 中国生物工程杂志, 2010, 30 (10): 94–99



Jin H, Luan Y S. Progress of transcription factor in gene engineering of diseases resistances in plant. Chin Biotechnol, 2010, 30 (10): 94–99 (in Chinese with English abstract)



[4]赵明辉, 马殿荣, 王嘉宇, 徐海, 唐亮, 陈温福. 低氮胁迫下水稻剑叶转录因子表达变化. 中国水稻科学, 2012, 26: 275–282



Zhao M H, Ma D R, Wang J Y, Xu H, Tang L, Chen W F. Expression of transcription factors of rice flag leaf under low nitrogen stress. Chin J Rice Sci, 2012, 26: 275–282 (in Chinese with English abstract)



[5]马廷臣, 余蓉蓉, 陈荣军, 曾汉来, 张端品. 全基因组表达分析不同强度干旱胁迫下常规籼稻根系转录因子表达变化. 核农学报, 2013, 27: 1258–1269



Ma T C, Yu R R, Chen R J, Zeng H L, Zhang D P. Global genome expression change of transcription factors in conventional indica rice roots under different drought stress. Acta Agric Nucl Sin, 2013, 27: 1258–1269 (in Chinese with English abstract)



[6]马廷臣, 陈荣军, 余蓉蓉, 曾汉来, 张端品. 全基因组分析PEG胁迫下水稻根系转录因子表达变化. 作物学报, 2009, 35: 1030–1037



Ma T C, Chen R J, Yu R R, Zeng H L, Zhang D P. Global genome expression analysis of transcription factors under PEG osmotic stress in rice root system. Acta Agron Sin, 2009, 35: 1030–1037 (in Chinese with English abstract)



[7]王曦, 汪小我, 王立坤, 冯智星, 张学工. 新一代高通量RNA测序数据的处理与分析. 生物化学与生物物理进展, 2010, 37: 834–846



Wang X, Wang X W, Wang L K, Feng Z X, Zhang X G. Processing and analysis of a new generation of high throughput RNA sequencing data. Prog Biochem Biophysics, 2010, 37: 834–846 (in Chinese with English abstract)



[8]谢为博. 基于表达谱芯片和新一代测序技术的高通量基因分型方法的开发. 华中农业大学博士学位论文, 湖北武汉, 2010. pp 17–18



Xie W B. Development of High Throughput Genotyping Methods Based on DNA Microarray and New Generation Sequencing Technologies. PhD Dissertation of Huazhong Agricultural University, Wuhan, China, 2010. pp 17–18 (in Chinese with English abstract)



[9]魏利斌, 苗红梅, 张海洋. 芝麻发育转录组分析. 中国农业科学, 2012, 45: 1246–1256



Wei L B, Miao H M, Zhang H Y. Transcriptomic analysis of sesame development. Sci Agric Sin, 2012, 45: 1246–1256 (in Chinese with English abstract)



[10]宋雯雯, 李文滨, 韩雪, 高慕娟, 王继安. 干旱胁迫下大豆幼苗根系基因的表达谱分析. 中国农业科学, 2010, 43: 579–4586



Song W W, Li W B, Han X, Gao M J, Wang J A. Analysis of gene expression profiles in soybean roots under drought stress. Sci Agric Sin, 2010, 43: 4579–4586  (in Chinese with English abstract)



[11]孙爱清, 张杰道, 万勇善, 刘风珍, 张昆, 孙利. 花生干旱胁迫响应基因的数字表达谱分析. 作物学报, 2013, 39: 1045–1053



Sun A Q, Zhang J D, Wan Y S, Liu F Z, Zhang K, Sun L. In silico expression profile of genes in response to drought in peanut. Acta Agron Sin, 2013, 39: 1045–1053 (in Chinese with English abstract)



[12]Wang G, Zhu Q G, Meng Q W, Wu C G. Transcript profiling during salt stress of young cotton (Gossypium hirsutum) seedlings via Solexa sequencing. Acta Physiol Plant, 2012, 34: 107–115



[13]Wu J, Zhang Y L, Zhang H Q, Huang H, Folta K M, Lu J. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol, 2010, 10: 234



[14]Yu S C, Zhang F L, Yu Y J, Zhang D S, Zhao X Y, Wang W H. Transcriptome profiling of dehydration stress in the Chinese cabbage (Brassica rapa L. ssp. pekinensis) by tag sequencing. Plant Mol Biol Rep, 2012, 30: 17–28



[15]Pang T, Ye C Y, Xia X L, Yin, W L. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Gene, 2013, 14: 488–503



[16]Shan X H , Li Y D, Jiang Y, Jiang Z L, Hao W Y, Yuan. Y P. Transcriptome profile analysis of maize seedlings in response to high-salinity, drought and cold stresses by deep sequencing. Plant Mol Biol Rep, 2013, 31: 1485–1491



[17]Andrew J C, Liu D C, Ramil M, Yue I C H, Rachid S. Transcriptome profiling of leaf elongation zone under drought in contrasting Rice cultivars. PloS One, 2013, 8: e54537



[18]Chen J H, Song Y P, Zhang H, Zhang D Q. Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Mol Biol Rep, 2013, 31: 946–962



[19]Wang Y, Xu L, Chen Y L, Shen H, Gong, Y Q, Cecilia L, Liu L W. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing. PloS One, 2013, 8: e66539



[20]彭姗, 吕学莲, 高峰, 李国英, 李晖. 一种新的棉花黄, 枯萎病快速接种方法的研究. 棉花学报, 2008, 20: 174–178



Peng S, Lv X L, Gao F, Li G Y, Li H. Study on a new rapid inoculation method for Verticillium wilt and Fusarium wilt of cotton. Cotton Sci, 2008, 20: 174–178 (in Chinese with English abstract)



[21]Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Natl Meth, 2008, 5: 621–628



[22]Audic S, Claverie J M. The significance of digital gene expression profiles. Genome Res, 1997, 7: 986–995



[23]Benjamini Y, Drai D, Elmer G, Kafkafid N, Golanib I. Controlling the false discovery rate in behavior genetics research. Behaviour Brain Res, 2001, 125: 279–284



[24]罗红丽, 陈银华. 植物抗病反应相关转录因子的研究进展. 热带生物学报, 2011, 2 (1): 83–88



Luo H L, Chen Y H. Advance on transcription factors involved in plant disease resistance response. Chin J Trop Crops, 2011, 2: 83–88 (in Chinese with English abstract)



[25]Zhang Y, Zhang G, Xia N, Wang X J, Huang L L, Kang Z S. Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol, 2008, 73: 88–94



[26]Lee S C, Choi H W, Hwang I S, Choi D S, Hwang B K. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta, 2006, 224: 1209–1225



[27]秦捷, 王武, 左开井, 唐克轩. AP2基因家族的起源和棉花AP2转录因子在抗病中的作用. 棉花学报, 2006, 17: 366–370



Qin J, Wang W, Zuo K J, Tang K X. Origin of AP2 gene family and cotton AP2 transcription factors roles in plant resistance. Cotton Sci, 2006, 17: 366–370 (in Chinese with English abstract)



[28]何兰兰, 柴蒙亮, 韩泽刚, 赵曾强, 张薇. 棉花抗枯萎病相关ERF-B3亚组转录因子的克隆与表达. 西北植物学报, 2013, 33: 2375–2381



He L L, Chai M L, Han Z G, Zhao Z Q, Zhang W. Cloning and expression of ERF-B3 subgroup transcription factor related to resistance Fusarium wilt in cotton. Acta Bot Boreali-Occident Sin, 2013, 33: 2375–2381 (in Chinese with English abstract)



[29]王磊, 高晓清, 朱苓华, 周永力, 黎志康. 植物WRKY转录因子家族基因抗病相关功能的研究进展. 植物遗传资源学报, 2011, 12: 80–85



Wang L, Gao X Q, Zhu L H, Zhou Y L, Li Z K. Advances in research on function of WRKY transcription factor genes in plant resistance. J Plant Genet Res, 2011, 12: 80–85 (in Chinese with English abstract)



[30]王瑞, 吴华玲, 王会芳, 黄珂, 霍春艳, 倪中福, 孙其信. 小麦TaWRKY44基因的克隆、表达分析及功能鉴定. 作物学报, 2013, 39: 1944–1951



Wang R, Wu H L, Wang H F, Huang K, Huo C Y, Ni Z F, Sun Q X. Cloning, characterization, and functional analysis of TaWRKY44 gene from wheat. Acta Agron Sin, 2013, 39: 1944–1951 (in Chinese with English abstract)



[31]Chen C, Chen Z. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol, 2002, 129: 706–716



[32]Zhang Z L, Xie Z, Zou X L, Casaretto J, Ho T H D, Shen Q X J. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol, 2004, 134: 1500–1513



[33]Xu Y H, Wang J W, Wang S, Wang J Y, Chen X Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene-delta-cadinene sythase-A. Plant Physiol, 2004, 135: 507–515



[34]Luo H, Song F, Goodman R M, Zheng Z. Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol, 2005, 7: 459–468



[35]Luo H, Song F, Zheng Z. Overexpression in transgenic tobacco reveals different roles for the rice homeodomain gene OsBIHD1 in biotic and abiotic stress responses. J Exp Bot, 2005, 56: 2673–2682



[36]Coego A, Ramirez V, Gil M J, Florsb V, Manic B M, Veraa P. An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. Plant Cell, 2005, 17: 2123–2137



[37]邢国芳, 张雁明, 张魏斌, 马新耀, 韩渊怀. 植物NAC转录因子的研究进展. 山西农业科学, 2012, 40: 409–411



Xing G F, Zhang Y M, Zhang W B, Ma X Y, Han Y H.Research progress of NAC transcription factor in plant. J Shanxi Agric Sci, 2012, 40: 409–411 (in Chinese with English abstract)



[38]李方正, 杨素欣, 吴春霞, 魏海超, 曲瑞莲, 冯献忠. 大豆KNOX基因家族的结构和表达分析. 植物学报, 2012, 47: 236–247



Li W Z, Yang S X, Wu Q X, Wei H C, Qu R L, Feng X Z. Structure and expression analysis of KNOX gene family in soybean. Chin Bull Bot, 2012, 47: 236–247 (in Chinese with English abstract)



[39]刘晓月, 王文生, 傅彬英. 植物bHLH转录因子家族的功能研究进展. 生物技术进展, 2012, (1): 391–397



Liu X Y, Wang W S, Fu B Y. Research progress of plant bHLH transcription factor family. Curr Biotechnol, 2012, (1): 391–397 (in Chinese with English abstract)

[1] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[2] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[3] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[4] GE Min, WANG Yuan-Cong, NING Li-Hua, HU Meng-Mei, SHI Xi, ZHAO Han. Function analysis of nitrogen-responsive transcription factor ZmNLP5 affecting root growth in maize [J]. Acta Agronomica Sinica, 2021, 47(5): 807-813.
[5] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[6] Meng-Ting YANG, Chun ZHANG, Zuo-Ping WANG, Hua-Wen ZOU, Zhong-Yi WU. Cloning and functional analysis of ZmbHLH161 gene in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 2008-2016.
[7] ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658.
[8] Mao-Ni CHAO,Hai-Yan HU,Run-Hao WANG,Yu CHEN,Li-Na FU,Qing-Qing LIU,Qing-Lian WANG. Cloning and functional analysis of promoter of potassium transporter gene GhHAK5 in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 40-51.
[9] YIN Long-Fei,WANG Zhao-Yang,WU Zhong-Yi,ZHANG Zhong-Bao,YU Rong. Cloning and functional analysis of ZmGRAS31 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(7): 1029-1037.
[10] Xiao-Hong ZHANG,Gen-Hai HU,Han-Tao WANG,Cong-Cong WANG,Heng-Ling WEI,Yuan-Zhi FU,Shu-Xun YU. Expression and promoter activity of GhTFL1a and GhTFL1c in Upland cotton [J]. Acta Agronomica Sinica, 2019, 45(3): 469-476.
[11] Mi WU,Nian WANG,Chao SHEN,Cong HUANG,Tian-Wang WEN,Zhong-Xu LIN. Development and evaluation of InDel markers in cotton based on whole-genome re-sequencing data [J]. Acta Agronomica Sinica, 2019, 45(2): 196-203.
[12] Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850.
[13] ZHANG Hong-Juan,LI Yu-Ying,MIAO Li-Li,WANG Jing-Yi,LI Chao-Nan,YANG De-Long,MAO Xin-Guo,JING Rui-Lian. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat [J]. Acta Agronomica Sinica, 2019, 45(11): 1615-1627.
[14] Cong HUANG,Xiao-Fang LI,Ding-Guo LI,Zhong-Xu LIN. QTL Mapping for Yield, Growth Period and Plant Height Traits Using MAGIC Population in Upland Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1320-1333.
[15] Ling WANG,Feng LIU,Ming-Jian DAI,Ting-Ting SUN,Wei-Hua SU,Chun-Feng WANG,Xu ZHANG,Hua-Ying MAO,Ya-Chun SU,You-Xiong QUE. Cloning and Expression Characteristic Analysis of ScWRKY4 Gene in Sugarcane [J]. Acta Agronomica Sinica, 2018, 44(9): 1367-1379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!