Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (06): 900-909.doi: 10.3724/SP.J.1006.2015.00900


Identification and Analysis of WRKY Transcription Factors in Triticum urartu

MA Jian-Hui,ZHANG Dai-Jing,GAO Xiao-Long,SHAO Yun,JIANG Li-Na*   

  1. College of Life Sciences, Henan Normal University, Xinxiang 453007, China
  • Received:2014-11-03 Revised:2015-04-02 Online:2015-06-12 Published:2015-04-14
  • Contact: 姜丽娜, E-mail: jianglina73@aliyun.com E-mail:cricaas@163.com


WRKY transcription factors have been found to be involved in the processes responding to various abiotic and biotic stresses in plants. The knowledge on WRKY transcription factors in Triticum urartu (AA) will facilitate the function study of WRKY transcription factors in hexaploid wheat (Triticum aestivum, AABBDD). In this study, 62 WRKY transcription factors with full length of coding sequence (CDS) were selected from Triticum urartu genome through bioinformatic analyses, in which 14 could be located on specific chromosomes and two pairs had been duplicated. These WRKY transcription factors were divided into eight subgroups by phylogenetic analysis and the exon–intron structure in individual subgroups was relatively conserved. Two WRKY transcription factors were selected for function validation, and their expressions consistently increased under diverse abiotic stresses by qRT-PCR assay.

Key words: Triticum urartu, WRKY transcription factor, Evolution analysis, Abiotic stress

[1]Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gen Genet, 1994, 244: 563–571

[2]Eulgem T, Rushton PJ, Robatzek S, Somssich I E. The WRKY super family of plant transcription factors. Trends Plant Sci, 2000, 5: 199–206

[3]Yu L, Chen C, Chen Z. Evidence for an important role of the WRKY DNA-binding proteins in the regulation of the NPR1 gene expression. Plant Cell, 2001, 13: 1527–1539

[4]Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51: 21–37

[5]Jiang Y, Deyholos M K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol, 2006, 6: 25

[6]Jiang Y, Deyholos M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol, 2009, 69: 91–105

[7]Zou C, Jiang W, Yu D. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot, 2010, 61: 3901–3914

[8]Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell, 2011, 23: 1639–1653

[9]Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA, 2005, 102: 17531–17536

[10]Xie Z, Zhang Z L, Zou X, Huang J, Ruas P, Thompson D, Shen Q J. Annotations and functional analysis of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol, 2005, 137: 176–189

[11]Ross C A, Liu Y, Shen Q J. The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol, 2007, 49: 827–842

[12]Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh PN, Ramachandran S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol, 2008, 49: 865–879

[13]Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot, 2011, 62: 4863–4874

[14]Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep, 2009, 28: 21–30

[15]Hwang S H, Yie S W, Hwang D J. Heterologous expression of OsWRKY6 gene in Arabidopsis activates the expression of defense related genes and enhances resistance to pathogens. Plant Sci, 2011, 181: 316–323

[16]Song Y, Chen L, Zhang L, Yu D. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis. J Biosci, 2010, 35: 459–471

[17]Yin G, Xu H, Xiao S, Qin Y, Li Y, Yan Y, Hu Y. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups. BMC Plant Biol, 2013, 13: 148

[18]Dou L, Zhang X, Pang C, Song M, Wei H, Fan S, Yu S. Genome-wide analysis of the WRKY gene family in cotton. Mol Genet Genomics, 2014: 1-19

[19]Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J, 2002, 31: 319–330

[20]Wei W, Zhang Y, Han L, Guan Z, Chai T. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep, 2008, 27: 795–903

[21]Marè C, Mazzucotelli E, Crosatti C, Francia E, Stanca Am, Cattivelli L. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol, 2004, 55: 339–416

[22]Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One, 2013, 8: e65120

[23]Niu C F, Wei W, Zhou Q Y, Tian A G, Hao Y J, Zhang W K, Ma B, Lin Q, Zhang Z B, Zhang J S, Chen S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ, 2012, 35: 1156–1170

[24]Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87–90

[25]Finn R D, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Volker Hollich1 TL, Moxon S, Marshall M, Khanna A, Durbin R, Eddy S R, Sonnhammer E L L, Bateman A. Pfam: clans, web tools and services. Nucl Acids Res, 2006, 34: D247–D251

[26]Letunic I, Doerks T, Bork P. SMART 6: recent updates and new developments. Nucl Acids Res, 2009, 37: D229–D232

[27]Wei H, Li W, Sun X, Zhu S, Zhu J. Systematic analysis and comparison of nucleotide-binding site disease resistance genes in a diploid cotton Gossypium raimondii. PLoS One, 2013, 8: e68435

[28]Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 1997, 94: 6809–6814

[29]Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucl Acids Res, 2006, 34: W609–W612

[30]郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026

Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas (Beijing), 2007, 29: 1023–1026 (in Chinese with English abstract)

[31]Holub E B. The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet, 2001, 2: 516–527

[32]Peng X, Zhao Y, Cao J, Zhang W, Jiang H, Li X, Ma Q, Zhu S, Cheng B. CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS One, 2012, 7: e40120

[33]Wu H, Ni Z, Yao Y, Guo G, Sun Q. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Prog Nat Sci, 2008, 18: 697–705

[1] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[2] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[3] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[4] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[5] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[6] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[7] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[8] Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711.
[9] LIANG Si-Wei,JIANG Hao-Liang,ZHAI Li-Hong,WAN Xiao-Rong,LI Xiao-Qin,JIANG Feng,SUN Wei. Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize [J]. Acta Agronomica Sinica, 2020, 46(4): 532-543.
[10] JIA Xiao-Xia,QI En-Fang,LIU Shi,WEN Guo-Hong,MA Sheng,LI Jian-Wu,HUANG Wei. Effects of over-expression of AtDREB1A gene on potato growth and abiotic stress resistance gene expression [J]. Acta Agronomica Sinica, 2019, 45(8): 1166-1175.
[11] SUN Ting-Ting,WANG Wen-Ju,LOU Wen-Yue,LIU Feng,ZHANG Xu,WANG Ling,CHEN Yu-Feng,QUE You-Xiong,XU Li-Ping,LI Da-Mei,SU Ya-Chun. Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1 [J]. Acta Agronomica Sinica, 2019, 45(7): 1002-1016.
[12] YIN Long-Fei,WANG Zhao-Yang,WU Zhong-Yi,ZHANG Zhong-Bao,YU Rong. Cloning and functional analysis of ZmGRAS31 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(7): 1029-1037.
[13] Hong-Ju JIAN,Bo YANG,Yang-Yang LI,Hong YANG,Lie-Zhao LIU,Xin-Fu XU,Jia-Na LI. Identification and expression analysis of PEBP gene family in oilseed rape [J]. Acta Agronomica Sinica, 2019, 45(3): 354-364.
[14] Ling WANG,Feng LIU,Ming-Jian DAI,Ting-Ting SUN,Wei-Hua SU,Chun-Feng WANG,Xu ZHANG,Hua-Ying MAO,Ya-Chun SU,You-Xiong QUE. Cloning and Expression Characteristic Analysis of ScWRKY4 Gene in Sugarcane [J]. Acta Agronomica Sinica, 2018, 44(9): 1367-1379.
[15] Dan-Xia KE,Kun-Peng PENG,Meng-Ke ZHANG,Yan JIA,Jing-Jing WANG. Cloning and Salt Resistance Function Identification of GmHDL57 Gene from Glycine max [J]. Acta Agronomica Sinica, 2018, 44(9): 1347-1356.
Full text



No Suggested Reading articles found!